全文获取类型
收费全文 | 3260篇 |
免费 | 26篇 |
国内免费 | 13篇 |
专业分类
航空 | 1578篇 |
航天技术 | 1152篇 |
综合类 | 4篇 |
航天 | 565篇 |
出版年
2021年 | 26篇 |
2019年 | 23篇 |
2018年 | 55篇 |
2017年 | 51篇 |
2016年 | 45篇 |
2015年 | 26篇 |
2014年 | 71篇 |
2013年 | 91篇 |
2012年 | 82篇 |
2011年 | 119篇 |
2010年 | 79篇 |
2009年 | 137篇 |
2008年 | 153篇 |
2007年 | 100篇 |
2006年 | 71篇 |
2005年 | 92篇 |
2004年 | 90篇 |
2003年 | 99篇 |
2002年 | 72篇 |
2001年 | 115篇 |
2000年 | 65篇 |
1999年 | 68篇 |
1998年 | 87篇 |
1997年 | 58篇 |
1996年 | 93篇 |
1995年 | 112篇 |
1994年 | 111篇 |
1993年 | 49篇 |
1992年 | 71篇 |
1991年 | 34篇 |
1990年 | 32篇 |
1989年 | 76篇 |
1988年 | 28篇 |
1987年 | 24篇 |
1986年 | 35篇 |
1985年 | 93篇 |
1984年 | 91篇 |
1983年 | 65篇 |
1982年 | 66篇 |
1981年 | 99篇 |
1980年 | 19篇 |
1979年 | 25篇 |
1978年 | 29篇 |
1977年 | 27篇 |
1975年 | 29篇 |
1974年 | 23篇 |
1973年 | 21篇 |
1972年 | 20篇 |
1970年 | 19篇 |
1969年 | 21篇 |
排序方式: 共有3299条查询结果,搜索用时 0 毫秒
51.
V. A. Kudinov A. V. Eremin A. E. Kuznetsova E. V. Stefanyuk 《Russian Aeronautics (Iz VUZ)》2014,57(1):37-44
An exact analytical solution of the thermoelasticity problem is presented for a multilayer shallow cylinder with physical properties of the medium that are constant in the limits of each layer. The effect of thermal shock of different intensity as well as the penetration depth of thermal disturbance on the distribution of radial and circumferential thermal stresses has been studied as applied to the one- and two-layer cylinder. It has been shown that the circumferential compressive stresses appear on the external surface of the cylinder under thermal shock while the tensile stresses appear on the internal surface. 相似文献
52.
A problem of modeling the incompressible viscous flow between two disks taking into account the rotation of one of them is
considered. We study the effect of the disk angular velocity (flow regimes) in the interdisk spacing, finiteness (infiniteness)
of disk radiuses, calculation region configuration as well as distances between disks on the flow characteristics, particularly,
on the resistance moment coefficient. Numerical simulation is performed with the aid of Maple and ANSYS Fluent software. 相似文献
53.
P. Démoulin E. Pariat 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
Mounting observational evidence of the emergence of twisted magnetic flux tubes through the photosphere have now been published. Such flux tubes, formed by the solar dynamo and transported through the convection zone, eventually reach the solar atmosphere. Their accumulation in the solar corona leads to flares and coronal mass ejections. Since reconnections occur during the evolution of the flux tubes, the concepts of twist and magnetic stress become inappropriate. Magnetic helicity, as a well preserved quantity, in particular in plasma with high magnetic Reynolds number, is a more suitable physical quantity to use, even if reconnection is involved. 相似文献
54.
55.
E. H. B. M. Gronenschild R. Mewe N. J. Westergaard J. Heise F. D. Seward T. Chlebowski N. P. M. Kuin A. C. Brinkman J. H. Dijkstra H. W. Schnopper 《Space Science Reviews》1981,30(1-4):185-189
The binary system Capella (G6 III + F9 III) has been observed on 1979 March 15 and on 1980 March 15–17 with the Objective Grating Spectrometer (OGS) onboard theEinstein Observatory. The spectrum measured with the 1000 l/mm grating covers the range 5–30 Å with a resolution < 1 Å. The spectra show evidence for a bimodal temperature distribution of emission measure in an optically thin plasma with one component 5 million degrees and the other one 10 million degrees. Spectral features can be identified with line emissions from O VIII, Fe XVII, Fe XVIII, Fe XXIV, and Ne X ions. Good spectral fits have been obtained assuming standard cosmic abundances. The data are interpreted in terms of emission from hot static coronal loops rather similar to the magnetic arch structures found on the Sun. It is shown that the conditions required by this model exist on Capella. Mean values of loop parameters are derived for both temperature components. 相似文献
56.
57.
E. Kendziorra W. Collmar H. Brunner R. Staubert W. Pietsch 《Space Science Reviews》1985,40(3-4):361-365
From a short observation of GX 5-1 with EXOSAT we have derived information on spectral and temporal behaviour in the energy range 1–20 keV. The source was found to be variable on time scales from 10 s to 1 h. Describing the spectrum one is forced to assume at least two spectral components. The best fit is reached using a spectrum composed of two blackbody functions with typical temperatures 1 keV and 2 keV, corresponding to apparent blackbody radii of 43 km and 11 km, respectively (for a distance of 10 kpc). With respect to the hot component there is evidence for variability in temperature as well as in apparent blackbody radius. No periodic variability has been found over the period range 0.25 s to 2000 s. There is no evidence for an iron emission line. 相似文献
58.
Ergun R.E. Carlson C.W. Mozer F.S. Delory G.T. Temerin M. McFadden J.P. Pankow D. Abiad R. Harvey P. Wilkes R. Primbsch H. Elphic R. Strangeway R. Pfaff R. Cattell C.A. 《Space Science Reviews》2001,98(1-2):67-91
We describe the electric field sensors and electric and magnetic field signal processing on the FAST (Fast Auroral SnapshoT) satellite. The FAST satellite was designed to make high time resolution observations of particles and electromagnetic fields in the auroral zone to study small-scale plasma interactions in the auroral acceleration region. The DC and AC electric fields are measured with three-axis dipole antennas with 56 m, 8 m, and 5 m baselines. A three-axis flux-gate magnetometer measures the DC magnetic field and a three-axis search coil measures the AC magnetic field. A central signal processing system receives all signals from the electric and magnetic field sensors. Spectral coverage is from DC to 4 MHz. There are several types of processed data. Survey data are continuous over the auroral zone and have full-orbit coverage for fluxgate magnetometer data. Burst data include a few minutes of a selected region of the auroral zone at the highest time resolution. A subset of the burst data, high speed burst memory data, are waveform data at 2×106 sample s–1. Electric field and magnetic field data are primarily waveforms and power spectral density as a function of frequency and time. There are also various types of focused data processing, including cross-spectral analysis, fine-frequency plasma wave tracking, high-frequency polarity measurement, and wave-particle correlations. 相似文献
59.
60.
F. Bagenal A. Adriani F. Allegrini S. J. Bolton B. Bonfond E. J. Bunce J. E. P. Connerney S. W. H. Cowley R. W. Ebert G. R. Gladstone C. J. Hansen W. S. Kurth S. M. Levin B. H. Mauk D. J. McComas C. P. Paranicas D. Santos-Costa R. M. Thorne P. Valek J. H. Waite P. Zarka 《Space Science Reviews》2017,213(1-4):219-287
In July 2016, NASA’s Juno mission becomes the first spacecraft to enter polar orbit of Jupiter and venture deep into unexplored polar territories of the magnetosphere. Focusing on these polar regions, we review current understanding of the structure and dynamics of the magnetosphere and summarize the outstanding issues. The Juno mission profile involves (a) a several-week approach from the dawn side of Jupiter’s magnetosphere, with an orbit-insertion maneuver on July 6, 2016; (b) a 107-day capture orbit, also on the dawn flank; and (c) a series of thirty 11-day science orbits with the spacecraft flying over Jupiter’s poles and ducking under the radiation belts. We show how Juno’s view of the magnetosphere evolves over the year of science orbits. The Juno spacecraft carries a range of instruments that take particles and fields measurements, remote sensing observations of auroral emissions at UV, visible, IR and radio wavelengths, and detect microwave emission from Jupiter’s radiation belts. We summarize how these Juno measurements address issues of auroral processes, microphysical plasma physics, ionosphere-magnetosphere and satellite-magnetosphere coupling, sources and sinks of plasma, the radiation belts, and the dynamics of the outer magnetosphere. To reach Jupiter, the Juno spacecraft passed close to the Earth on October 9, 2013, gaining the necessary energy to get to Jupiter. The Earth flyby provided an opportunity to test Juno’s instrumentation as well as take scientific data in the terrestrial magnetosphere, in conjunction with ground-based and Earth-orbiting assets. 相似文献