We measured the induction of structural aberrations in human chromosome 5 induced by iron ions using the novel technique of multicolor banding in situ hybridization (mBAND). Human lymphocytes isolated from whole blood were exposed in vitro to 500 MeV/n (LET=200 keV/micrometers, doses 1 or 4 Gy) Fe nuclei at the HIMAC accelerator in Chiba (Japan). Chromosomes were prematurely condensed by calyculin A after 48 h in culture and slides were painted by mBAND. We found a frequency of 0.11 and 0.57 residual breakpoints per chromosome 5 after 1 and 4 Gy Fe-ions, respectively. Inter-chromosomal exchanges were the prevalent aberration type measured at both doses, followed by terminal deletions, and by intra-chromosomal exchanges. Among intra-chromosomal exchanges, intra-arm events were more frequent than inter-arm, but a significant number of intra-changes was associated to inter-changes involving the same chromosome after 4 Gy of iron ions. These events show that the complexity of chromosomal exchanges induced by heavy ions can be higher than expected by previous FISH studies. 相似文献
The composition of anomalous cosmic rays (ACR), is thought to reflect that of the neutral atoms in the very local interstellar medium, such as helium, nitrogen and neon. Recent observations in the outer heliosphere have provided the first unambiguous evidence for ACR argon, carbon and hydrogen, as well, and a method has been developed to relate the ACR abundances to those of the interstellar medium. The observations also indicate persistent negative latitudinal gradients, opposite to that observed by Pioneer 11 during the previous minimum in solar activity. These and other results are consistent with the presence of gradient and curvature drift during solar minimum periods when the tilt of the interplanetary neutral sheet is small. 相似文献
We have aimed to present a comprehensive review of our understanding to date of the formation of DNA strand breaks induced by high LET radiation. We have discussed data obtained from DNA in solution as well as from the formation and "repair" of strand breaks in cell DNA. There is good agreement, qualitatively, between these two systems. Results were evaluated for two parameters: (1) effectivity per particle, the cross section (sigma) in micrometers 2/particle; and (2) the strand break induction frequency as number of breaks per Gy per unit DNA (bp or dalton). A series of biological effects curves (one for each Z-number) is obtained in effectivity versus LET plots. The relationships between induction frequencies of single-strand breaks, or double-strand breaks, or the residual "irrepairable" breaks and LET-values have been evaluated and discussed for a wide spectrum of heavy ions, both for DNA in solution and for DNA in the cell. For radiation induced total breaks in cell DNA, the RBE is less than one, while the RBE for the induction of DSBs can be greater than one in the 100-200 keV/micrometers range. The level of irrepairable strand breaks is highest in this same LET range and may reach 25 percent of the initial break yield. The data presented cover results obtained for helium to uranium particles, covering a particle incident energy range of about 2 to 900 MeV/u with a corresponding LET range of near 16 to 16000 keV/micrometers. 相似文献
Sharp (<10 min) and large (>20%) solar wind ion flux changes are common phenomena in turbulent solar wind plasma. These changes are the boundaries of small- and middle-scale solar wind plasma structures which can have a significant influence on Earth’s magnetosphere. These solar wind ion flux changes are typically accompanied by only a small change in the bulk solar wind velocity, hence, the flux changes are driven mainly by plasma density variations. We show that these events occur more frequently in high-density solar wind. A characteristic of solar wind turbulence, intermittency, is determined for time periods with and without these flux changes. The probability distribution functions (PDF) of solar wind ion flux variations for different time scales are calculated for each of these periods and compared. For large time scales, the PDFs are Gaussian for both data sets. For small time scales, the PDFs from both data set are more flat than Gaussian, but the degree of flatness is much larger for the data near the sharp flux change boundaries. 相似文献
During 1986-1990 seven prime spacecrews (16 cosmonauts) have flown on-board the Mir orbital complex. The longest space mission duration was 366 days The principal objectives of the medical tasks were the maintenance of good health and performance of the spacecrews and conducting medical research programs which included study of the cardiovascular, motor, endocrine, blood, immune, and metabolic systems. Results obtained point to the ability of humans to readily adapt to a year-long stay in space and maintain good health and performance. Readaptation had a similar course as after other previous long-term space flights of up to 8 months in duration. Primary body system changes were not qualitatively different from findings after flights aboard the Salyut 6 and 7 space stations. In this case, during and after an 11-12 month flight, body system alterations were even less severe which was a result of adequate countermeasure use, their systematic and creative employment and maintenance of required environments to support life and work in space. 相似文献
In May of 2011, NASA selected the Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer (OSIRIS-REx) asteroid sample return mission as the third mission in the New Frontiers program. The other two New Frontiers missions are New Horizons, which explored Pluto during a flyby in July 2015 and is on its way for a flyby of Kuiper Belt object 2014 MU69 on January 1, 2019, and Juno, an orbiting mission that is studying the origin, evolution, and internal structure of Jupiter. The spacecraft departed for near-Earth asteroid (101955) Bennu aboard an United Launch Alliance Atlas V 411 evolved expendable launch vehicle at 7:05 p.m. EDT on September 8, 2016, on a seven-year journey to return samples from Bennu. The spacecraft is on an outbound-cruise trajectory that will result in a rendezvous with Bennu in November 2018. The science instruments on the spacecraft will survey Bennu to measure its physical, geological, and chemical properties, and the team will use these data to select a site on the surface to collect at least 60 g of asteroid regolith. The team will also analyze the remote-sensing data to perform a detailed study of the sample site for context, assess Bennu’s resource potential, refine estimates of its impact probability with Earth, and provide ground-truth data for the extensive astronomical data set collected on this asteroid. The spacecraft will leave Bennu in 2021 and return the sample to the Utah Test and Training Range (UTTR) on September 24, 2023.
The results of numerical solution of the wave equations for the oblique incidence of whistling electromagnetic waves upon the night ionosphere from above have been obtained and analyzed. In the studied region of altitudes, within the wavelength scale, charged particle concentration varies drastically, and damping caused by collisions between the charged and neutral particles decreases considerably. Below, the sharp lower boundary of the ionosphere, the refractive index of the whistler wave approaches unity, and plasma turbulence transform into atmospheric electromagnetic waves. The dependences of the whistler reflection factor are found in terms of energy and horizontal magnetic component of the electromagnetic wave near the Earth’s surface on the frequency and the wave vector transverse component for the plain-layered medium model at two values of latitude. Strong dependences have been found on the wave angle of incidence and frequency. At rather small angles of incidence, the wave disturbances reach the Earth’s surface, and the module of reflection coefficient logarithm is in the range of 0.4–1. At large angles of incidence, the reflection coefficient module varies over a wide range depending on specific conditions. The obtained results explain the absence of oscillation modes of plasma magnetosphere maser in the night magnetosphere. 相似文献