首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6011篇
  免费   28篇
  国内免费   17篇
航空   2790篇
航天技术   2119篇
综合类   185篇
航天   962篇
  2021年   43篇
  2019年   39篇
  2018年   99篇
  2017年   72篇
  2016年   67篇
  2015年   37篇
  2014年   132篇
  2013年   161篇
  2012年   145篇
  2011年   215篇
  2010年   135篇
  2009年   245篇
  2008年   282篇
  2007年   167篇
  2006年   136篇
  2005年   163篇
  2004年   156篇
  2003年   181篇
  2002年   217篇
  2001年   256篇
  2000年   107篇
  1999年   142篇
  1998年   163篇
  1997年   124篇
  1996年   178篇
  1995年   198篇
  1994年   172篇
  1993年   85篇
  1992年   129篇
  1991年   61篇
  1990年   58篇
  1989年   132篇
  1988年   52篇
  1987年   46篇
  1986年   60篇
  1985年   185篇
  1984年   175篇
  1983年   113篇
  1982年   134篇
  1981年   187篇
  1980年   42篇
  1979年   40篇
  1978年   48篇
  1977年   45篇
  1975年   47篇
  1974年   48篇
  1972年   39篇
  1971年   37篇
  1970年   38篇
  1969年   42篇
排序方式: 共有6056条查询结果,搜索用时 359 毫秒
601.
The paper elaborates on “ lessons learned” from two recent ESA workshops, one focussing on the role of Innovation in the competitiveness of the space sector and the second on technology and engineering aspects conducive to better, faster and cheaper space programmes. The paper focuses primarily on four major aspects, namely:
1. a) the adaptations of industrial and public organisations to the global market needs;
2. b) the understanding of the bottleneck factors limiting competitiveness;
3. c) the trends toward new system architectures and new engineering and production methods;
4. d) the understanding of the role of new technology in the future applications.

Under the pressure of market forces and the influence of many global and regional players, applications of space systems and technology are becoming more and more competitive. It is well recognised that without major effort for innovation in industrial practices, organisations, R&D, marketing and financial approaches the European space sector will stagnate and loose its competence as well as its competitiveness. It is also recognised that a programme run according to the “better, faster, cheaper” philosophy relies on much closer integration of system design, development and verification, and draws heavily on a robust and comprehensive programme of technology development, which must run in parallel and off-line with respect to flight programmes.

A company's innovation capabilities will determine its future competitive advantage (in time, cost, performance or value) and overall growth potential. Innovation must be a process that can be counted on to provide repetitive, sustainable, long-term performance improvements. As such, it needs not depend on great breakthroughs in technology and concepts (which are accidental and rare). Rather, it could be based on bold evolution through the establishment of know-how, application of best practices, process effectiveness and high standards, performance measurement, and attention to customers and professional marketing. Having a technological lead allows industry to gain a competitive advantage in performance, cost and opportunities. Instrumental to better competitiveness is an R&D effort based on the adaptation of high technology products, capable of capturing new users, increasing production, decreasing the cost and delivery time and integrating high level of intelligence, information and autonomy. New systems will have to take in to account from the start what types of technologies are being developed or are already available in other areas outside space, and design their system accordingly. The future challenge for “faster, better, cheaper” appears to concern primarily “cost-effective”, performant autonomous spacecraft, “cost-effective”, reliable launching means and intelligent data fusion technologies and robust software serving mass- market real time services, distributed via EHF bands and Internet.

In conclusion, it can be noticed that in the past few years new approaches have considerably enlarged the ways in which space missions can be implemented. They are supported by true innovations in mission concepts, system architecture, development and technologies, in particular for the development of initiatives based on multi-mission mini-satellites platforms for communication and Earth observation missions. There are also definite limits to cost cutting (such as lowering heads counts and increasing efficiency), and therefore the strategic perspective must be shifted from the present emphasis on cost-driven enhancement to revenue-driven improvements for growth. And since the product life-cycle is continuously shortening, competitiveness is linked very strongly with the capability to generate new technology products which enhance cost/benefit performance.  相似文献   

602.
We discuss current progress and future plans for the general antiparticle spectrometer experiment (GAPS). GAPS detects antideuterons through the X-rays and pions emitted during the deexcitation of exotic atoms formed when the antideuterons are slowed down and stopped in targets. GAPS provides an exceptionally sensitive means to detect cosmic-ray antideuterons. Cosmic-ray antideuterons can provide indirect evidence for the existence of dark matter in such form as neutralinos or Kaluza–Klein particles. We describe results of accelerator testing of GAPS prototypes, tentative design concepts for a flight GAPS detector, and near-term plans for flying a GAPS prototype on a balloon.  相似文献   
603.
The problem of soil and vegetation recognition with the use of satellite-derived digitized images and sub-satellite spectral brightness measurements at test sites data is discussed. A technique for retrieval of soil humus content is suggested.  相似文献   
604.
605.
606.
A study of the effect of observation errors on the best least squares estimate of satellite attitude based on two sets of direction measurements, where one set contains two independent measurements which are corrupted by zero-mean normally distributed additive errors, is summarized. Using Monte-Carlo techniques, the statistics of the estimated rotation of the satellite, from a known reference, were obtained. It was found that one of the parameterizations of the rotation, namely, the vector z, is best suited for estimation, since ?z is normally distributed with zero mean and its standard deviation is independent of the two direction measurements.  相似文献   
607.
608.
609.
Two new methods of landmark navigation were recently presented. The landmarks are assumed to be within sight of the navigator but with unknown positions. Both methods require computations which are time consuming when a computer is not available. This correspondence presents the concept of a new navigation device called ?landmark navigation rule? which eliminates all the computation effort required in both new methods. The device is simple in construction, lightweight, and consumes no power.  相似文献   
610.
The results of a large number of the antenna radiometric measurements at bands of 92, 18, 6.2, 1.35, and 1.7-1.2 cm are presented by the data of the standard telemetry system of the Spektr-R spacecraft. Both special sessions of calibration object observations in the mode of a single space radio telescope (SRT) operation and numerous observations of researched sources in the mode of the ground-space interferometer were used. The obtained results agree with the first results of Kardashev et al. (2013), i.e., within 10–15% at bands of 92, 18, and 6.2 cm and 20–25% at the band of 1.35 cm. In the main, the measurements for the eight subbands at wavelengths of 1.7-1.2 cm indicate a monotonic increase in the spectral system equivalent flux density (SEFD) of noise radiation with a frequency consistent with the calculated estimates for the discussed model. The sensitivity of the ground-space interferometer for the five subbands at wavelengths from 1.35 to 1.7 cm can be higher by a factor of 1.5, and for the three subbands from 1.35 to 1.2 cm lower by a factor of 1.5 than at the band of 1.35 cm. The SRT contribution to the interferometer sensitivity proportional to the square root of SEFD is close to the design one at the bands of 92 and 18 cm and decreases the design sensitivity approximately by a factor of 1.5 and 2 at the bands of 6.2 and 1.35 cm, respectively. These differences of implemented values from the design ones were not significantly affected the scientific program implementation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号