首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5282篇
  免费   25篇
  国内免费   19篇
航空   2530篇
航天技术   1873篇
综合类   13篇
航天   910篇
  2021年   44篇
  2019年   38篇
  2018年   103篇
  2017年   75篇
  2016年   68篇
  2015年   40篇
  2014年   109篇
  2013年   165篇
  2012年   130篇
  2011年   184篇
  2010年   133篇
  2009年   230篇
  2008年   259篇
  2007年   145篇
  2006年   126篇
  2005年   136篇
  2004年   140篇
  2003年   165篇
  2002年   104篇
  2001年   191篇
  2000年   102篇
  1999年   123篇
  1998年   140篇
  1997年   110篇
  1996年   138篇
  1995年   168篇
  1994年   175篇
  1993年   79篇
  1992年   105篇
  1991年   50篇
  1990年   52篇
  1989年   116篇
  1988年   54篇
  1987年   41篇
  1986年   58篇
  1985年   150篇
  1984年   156篇
  1983年   104篇
  1982年   127篇
  1981年   160篇
  1980年   36篇
  1979年   34篇
  1978年   57篇
  1977年   35篇
  1975年   49篇
  1974年   38篇
  1973年   36篇
  1972年   35篇
  1970年   27篇
  1969年   31篇
排序方式: 共有5326条查询结果,搜索用时 875 毫秒
991.
We developed two types of hybrid terminals that can provide both satellite communication and position determination services in one system. One terminal uses the single channel per carrier (SCPC) technique and the other uses the spread spectrum (SS) technique. To evaluate the performance of the two systems, we carried out experiments in Japan and in the Pacific Ocean using two geostationary satellites, ETS-V (150°E) and Inmarsat (180°E). The ranging accuracy between the mobile terminals and the base station via the satellites was found to be about 200 m using the SCPC system and about 10 m using the SS system. The measured positioning accuracy was about 1 km in the SCPC system and about 600 m in the SS system when experiments were carried out near Japan. The experimental results show that the positioning errors were mainly caused by the orbital determination errors of the two satellites. Presented here are the configurations and features of the SCPC and SS terminals, the experimental system, and the experimental results  相似文献   
992.
Previous studies have identified solar 27-day signatures in several parameters in the Mesosphere/Lower thermosphere region, including temperature and Noctilucent cloud (NLC) occurrence frequency. In this study we report on a solar 27-day signature in NLC altitude with peak-to-peak variations of about 400?m. We use SCIAMACHY limb-scatter observations from 2002 to 2012 to detect NLCs. The superposed epoch analysis method is applied to extract solar 27-day signatures. A 27-day signature in NLC altitude can be identified in both hemispheres in the SCIAMACHY dataset, but the signature is more pronounced in the northern hemisphere. The solar signature in NLC altitude is found to be in phase with solar activity and temperature for latitudes ?70°N. We provide a qualitative explanation for the positive correlation between solar activity and NLC altitude based on published model simulations.  相似文献   
993.
Self-organization is a property of dissipative nonlinear processes that are governed by a global driving force and a local positive feedback mechanism, which creates regular geometric and/or temporal patterns, and decreases the entropy locally, in contrast to random processes. Here we investigate for the first time a comprehensive number of (17) self-organization processes that operate in planetary physics, solar physics, stellar physics, galactic physics, and cosmology. Self-organizing systems create spontaneous “order out of randomness”, during the evolution from an initially disordered system to an ordered quasi-stationary system, mostly by quasi-periodic limit-cycle dynamics, but also by harmonic (mechanical or gyromagnetic) resonances. The global driving force can be due to gravity, electromagnetic forces, mechanical forces (e.g., rotation or differential rotation), thermal pressure, or acceleration of nonthermal particles, while the positive feedback mechanism is often an instability, such as the magneto-rotational (Balbus-Hawley) instability, the convective (Rayleigh-Bénard) instability, turbulence, vortex attraction, magnetic reconnection, plasma condensation, or a loss-cone instability. Physical models of astrophysical self-organization processes require hydrodynamic, magneto-hydrodynamic (MHD), plasma, or N-body simulations. Analytical formulations of self-organizing systems generally involve coupled differential equations with limit-cycle solutions of the Lotka-Volterra or Hopf-bifurcation type.  相似文献   
994.
The ExoMars Trace Gas Orbiter (TGO) Science Ground Segment (SGS), comprised of payload Instrument Team, ESA and Russian operational centres, is responsible for planning the science operations of the TGO mission and for the generation and archiving of the scientific data products to levels meeting the scientific aims and criteria specified by the ESA Project Scientist as advised by the Science Working Team (SWT). The ExoMars SGS builds extensively upon tools and experience acquired through earlier ESA planetary missions like Mars and Venus Express, and Rosetta, but also is breaking ground in various respects toward the science operations of future missions like BepiColombo or JUICE. A productive interaction with the Russian partners in the mission facilitates broad and effective collaboration. This paper describes the global organisation and operation of the SGS, with reference to its principal systems, interfaces and operational processes.  相似文献   
995.
Land surface temperature (LST) calculation utilizing satellite thermal images is very difficult due to the great temporal variance of atmospheric water vapor in the atmosphere which strongly affects the thermal radiance incoming to satellite sensors. In this study, Split-Window (SW) and Radial Basis Function (RBF) methods were utilized for prediction of LST using precipitable water for Turkey. Coll 94 Split-Window algorithm was modified using regional precipitable water values estimated from upper-air Radiosond observations for the years 1990–2007 and Local Split-Window (LSW) algorithms were generated for the study area. Using local algorithms and Advanced Very High Resolution Radiometer (AVHRR) data, monthly mean daily sum LST values were calculated. In RBF method latitude, longitude, altitude, surface emissivity, sun shine duration and precipitable water values were used as input variables of the structure. Correlation coefficients between estimated and measured LST values were obtained as 99.23% (for RBF) and 94.48% (for LSW) at 00:00 UTC and 92.77% (for RBF) and 89.98% (for LSW) at 12:00 UTC. These meaningful statistical results suggest that RBF and LSW methods could be used for LST calculation.  相似文献   
996.
In this paper, we present the spatial variations of O(1D) airglow observed by the ISUAL (Imager of Sprites and Upper Atmospheric Lightning) instrument on board the FORMOSAT-2 satellite. With a CCD camera and a 630 nm filter, ISUAL can measure global atmospheric emissions lying between the heights of 80 and 300 km. In days of 3–6 September 2008 and 25–27 February 2009, ISUAL has measured the emissions of O(1D) airglow with results showing strong longitudinal peak-3 and peak-4 structures. The Lomb-Scargle analyses for these two cases show periods of longitudes of 120° and 90° supporting the DE2 and DE3 non-migrating tides. The 630 nm emissions are enhanced in equatorial regions and are lying along the equator. Over Africa its intensity can sometimes increase up to 80% relative to other longitudes. The perturbation is so strong that non-migrating tides are erased. A case of bimodal distribution with strong emissions at latitudes in equator and mid-latitude in geographic coordinates was observed.  相似文献   
997.
Algebraic reconstruction techniques (ART) have been successfully used to reconstruct the total electron content (TEC) of the ionosphere and in recent years be tentatively used in tropospheric wet refractivity and water vapor tomography in the ground-based GNSS technology. The previous research on ART used in tropospheric water vapor tomography focused on the convergence and relaxation parameters for various algebraic reconstruction techniques and rarely discussed the impact of Gaussian constraints and initial field on the iteration results. The existing accuracy evaluation parameters calculated from slant wet delay can only evaluate the resultant precision of the voxels penetrated by slant paths and cannot evaluate that of the voxels not penetrated by any slant path. The paper proposes two new statistical parameters Bias and RMS, calculated from wet refractivity of the total voxels, to improve the deficiencies of existing evaluation parameters and then discusses the effect of the Gaussian constraints and initial field on the convergence and tomography results in multiplicative algebraic reconstruction technique (MART) to reconstruct the 4D tropospheric wet refractivity field using simulation method.  相似文献   
998.
The interaction of galactic cosmic rays (GCRs) and solar energetic particles (SEPs) with the lunar surface produces secondary radiations as neutrons. The study of the production and attenuation of these neutrons in the lunar soil is very important to estimate the annual ambient dose equivalent on the lunar surface and for lunar nuclear spectroscopy. Also, understanding the attenuation of fast neutrons in lunar soils can help in measuring of the lunar neutron density profile and to measure the neutron flux on the lunar surface. In this paper, the attenuation of fast neutrons in different lunar soils is investigated. The macroscopic effective removal cross section (ΣR)(ΣR) of fast neutrons was theoretically calculated from the mass removal cross-section values (ΣR/ρ)(ΣR/ρ) for various elements in soils. The obtained values of (ΣR)(ΣR) were discussed according to the density. The results show that the attenuation of fast neutrons is more important in the landing sites of Apollo 12 and Luna 16 than the other landing sites of Apollo and Luna missions.  相似文献   
999.
We report work utilizing 15-min resolution ionospheric data obtained with DPS-4 digisonde in 2003–2011 to study the seasonal variations in amplitudes and phases of the most powerful spectral components of the F2 layer critical frequency (foF2) and peak height (hmF2) fluctuations over Irkutsk (52.5°N, 104.0°E). We show that fluctuations of both parameters contain quasi-harmonic components with periods of Tn = 24/n h (n = 1–7). The number of distinct spectral peaks varies from 3 in summer to 7 in winter. Amplitude and phase characteristics of the diurnal (n = 1) and semidiurnal (n = 2) components is studied using the data sets extracted from the original data sets with band-pass filter. It has been found that the amplitudes of diurnal/semidiurnal foF2 and diurnal hmF2 components are maximum in winter and minimum in summer. Amplitudes of the diurnal components vary gradually; those of the foF2 semidiurnal one, abruptly, thus forming a narrow winter maximum in November–January. The phase (local time of maximum) of the diurnal foF2 component increases gradually by 4–6 h from winter to summer. The phase of the semidiurnal foF2 component is nearly stable in winter/summer and sharply decreases (increases) by 2–3 h near the spring (autumn) equinox. The phase of the diurnal component of hmF2 (local time of minimum) varies slightly between 1130 and 1300 LT; that of the semidiurnal one decreases (increases) by 4–6 h from January to March (from September to November). The results obtained show that the main features of seasonal variations in the diurnal and semidiurnal components of the mid-latitude F2 layer parameters recur consistently during the solar activity growth and decline phases.  相似文献   
1000.
Lagrangian points L4 and L5 lie at 60° ahead of and behind the Moon in its orbit with respect to the Earth. Each one of them is a third point of an equilateral triangle with the base of the line defined by those two bodies. These Lagrangian points are stable for the Earth–Moon mass ratio. As so, these Lagrangian points represent remarkable positions to host astronomical observatories or space stations. However, this same distance characteristic may be a challenge for periodic servicing mission. This paper studies elliptic trajectories from an Earth circular parking orbit to reach the Moon’s sphere of influence and apply a swing-by maneuver in order to re-direct the path of a spacecraft to a vicinity of the Lagrangian points L4 and L5. Once the geocentric transfer orbit and the initial impulsive thrust have been determined, the goal is to establish the angle at which the geocentric trajectory crosses the lunar sphere of influence in such a way that when the spacecraft leaves the Moon’s gravitational field, its trajectory and velocity with respect to the Earth change in order to the spacecraft arrives at L4 and L5. In this work, the planar Circular Restricted Three Body Problem approximation is used and in order to avoid solving a two boundary problem, the patched-conic approximation is considered.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号