首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3789篇
  免费   2篇
  国内免费   19篇
航空   1997篇
航天技术   1052篇
综合类   10篇
航天   751篇
  2019年   18篇
  2018年   185篇
  2017年   156篇
  2016年   53篇
  2015年   30篇
  2014年   49篇
  2013年   62篇
  2012年   92篇
  2011年   214篇
  2010年   188篇
  2009年   233篇
  2008年   250篇
  2007年   203篇
  2006年   67篇
  2005年   121篇
  2004年   94篇
  2003年   80篇
  2002年   54篇
  2001年   84篇
  2000年   49篇
  1999年   63篇
  1998年   81篇
  1997年   49篇
  1996年   64篇
  1995年   78篇
  1994年   77篇
  1993年   53篇
  1992年   63篇
  1991年   33篇
  1990年   32篇
  1989年   70篇
  1988年   26篇
  1987年   28篇
  1986年   30篇
  1985年   119篇
  1984年   68篇
  1983年   57篇
  1982年   58篇
  1981年   103篇
  1980年   34篇
  1979年   26篇
  1978年   24篇
  1977年   28篇
  1976年   18篇
  1975年   31篇
  1974年   19篇
  1973年   25篇
  1972年   20篇
  1970年   24篇
  1969年   26篇
排序方式: 共有3810条查询结果,搜索用时 15 毫秒
481.
Fuzzy logic applications to multisensor-multitarget correlation   总被引:1,自引:0,他引:1  
A consistent tactical picture requires data fusion technology to combine and propagate information received from diverse objects and usually vague situations. The information may be contained in two types of data; numerical data received from sensor measurements, and linguistic data obtained from human operators and domain experts. In real world situations, the numerical data may be noisy, inconsistent, and incomplete, and the linguistic information is imprecise and vague. To deal with these two types of data simultaneously, fuzzy sets and fuzzy logic provide a methodology to obtain an approximate but consistent tactical picture in a timely manner for very complex or ill-defined engineering problems. A functional paradigm for fuzzy data fusion is presented. It consists of four basic elements: (1) fuzzification of crisp elements, (2) fuzzy knowledge base derived from numerical input/output relations and humans, (3) fuzzy inference mechanism based on a class of fuzzy logic, (4) defuzzification of fuzzy outputs into crisp outputs for use by a plant. For real-time practical systems, the on-line determination of a fuzzy membership function from a given set of crisp inputs is vital. To this end, a methodology for estimating an optimal membership function from crisp input data has been implemented. This is based on the possibility/probability consistency principle as proposed by L.A. Zadeh. A relationship between the fuzzy membership function and the confidence level of statistical input data has been developed and it serves as a design parameter for fuzzification. This technique has been applied to a two-dimensional multisensor-multitarget tracking system. Fuzzy system performance evaluations have been presented. With simulated data in the laboratory environment, the simulation has been performed to evaluate the Mission Avionics Sensor Synergism (MASS) Systems. These results show better performance for the data correlation function using the fuzzy logic techniques.  相似文献   
482.
The current Martian water cycle is extremely asymmetric, with large amounts of vapor subliming off a permanent north polar water ice cap in northern summer, but with no apparent major source of water vapor in the southern hemisphere. Detailed simulations of this process with a three-dimensional circulation model indicate that the summertime interhemispheric exchange (Hadley cell) is very much stronger than transport by eddies in other seasons. As a result, water ice would be distributed globally were it not for the buffering action of regolith soil adsorption which limits the net flux of water vapor off the north polar cap to amounts that are insignificant even on the scale of thousands of years. It has been suggested that the polar layered deposits are the result of exchange on these long time scales, driven by changes in Martian orbital parameters. We therefore are conducting simulations to test the effect of varied orbital parameters on the Martian water cycle. We find that when the perihelion summer pole is charged with a polar water ice cap, large quantities of water are quickly transfered to the aphelion summer pole, setting up an annual cycle that resembles the present one. Thus, the adsorptivity of the Martian regolith may be in the narrow range where it can limit net transport from the aphelion but not the perihelion pole.  相似文献   
483.
An airborne vehicle such as a rotorcraft must avoid obstacles like antennas, towers, poles, fences, tree branches, and wires strung across the flight path. Automatic detection of the obstacles and generation of appropriate guidance and control actions for the vehicle to avoid these obstacles would facilitate autonomous navigation. The requirements of an obstacle detection system for rotorcraft in low-altitude Nap-of-the-Earth (NOE) flight based on various rotorcraft motion constraints is analyzed here in detail. It is argued that an automated obstacle detection system for the rotorcraft scenario should include both passive and active sensors to be effective. Consequently, it introduces a maximally passive system which involves the use of passive sensors (TV, FLIR) as well as the selective use of an active (laser) sensor. The passive component is concerned with estimating range using optical flow-based motion analysis and binocular stereo. The optical flow-based motion analysis that is combined with on-board inertial navigation system (INS) to compute ranges to visible scene points is described. Experimental results obtained using land vehicle data illustrate the particular approach to motion analysis  相似文献   
484.
Acquisition and false acquisition probabilities are derived for search including overlap between observation regions. (Gap-free search, important in many applications, frequently involves overlap.) Search patterns are included, together with system parameters and observation sequences minimizing search time. Design curves applicable to laser, radar, sonar, and other methods are used in practical examples. These examples, accounting for beam shape and receiver characteristics, show that the small overlap in these patterns compensates for beam edge effects  相似文献   
485.
Estimation of exposure due to environmental and other sources of radiations of high-LET and low-LET is of interest in radiobiology and radiation protection for risk assessment. To account for the differences in effectiveness of different types of radiations various parameters have been used. However, the relative inadequacy of the commonly used parameters, including dose, fluence, linear energy transfer, lineal energy, specific energy and quality factor, has been made manifest by the biological importance of the microscopic track structure and primary modes of interaction. Monte Carlo track structure simulations have been used to calculate the frequency of energy deposition by radiations of high- and low-LET in target sizes similar to DNA and higher order genomic structure. Tracks of monoenergetic heavy ions and electrons were constructed by following the molecular interaction-by-interaction histories of the particles down to 10 eV. Subsequently, geometrical models of these assumed biological targets were randomly exposed to the radiation tracks and the frequency of energy depositions obtained were normalized to unit dose in unit density liquid water (l0(3) kg m-3). From these data and a more sophisticated model of the DNA, absolute yields of both single- and double-strand breaks expressed in number of breaks per dalton per Gray were obtained and compared with the measured yields. The relative biological effectiveness (RBE) for energy depositions in cylindrical targets has been calculated using 100 keV electrons as the reference radiation assuming the electron track-ends contribution is similar to that in 250 kV X-ray or Co60 gamma-ray irradiations.  相似文献   
486.
The cytoskeleton is a complex network of fibers that is sensitive to environmental factors including microgravity and altered gravitational forces. Cellular functions such as transport of cell organelles depend on cytoskeletal integrity; regulation of cytoskeletal activity plays a role in cell maintenance, cell division, and apoptosis. Here we report cytoskeletal and mitochondria alterations in cultured human lymphocyte (Jurkat) cells after exposure to spaceflight and in insect cells of Drosophila melanogaster (Schneider S-1) after exposure to conditions created by clinostat rotation. Jurkat cells were flown on the space shuttle in Biorack cassettes while Schneider S-1 cells were exposed to altered gravity forces as produced by clinostat rotation. The effects of both treatments were similar in the different cell types. Fifty percent of cells displayed effects on the microtubule network in both cell lines. Under these experimental conditions mitochondria clustering and morphological alterations of mitochondrial cristae was observed to various degrees after 4 and 48 hours of culture. Jurkat cells underwent cell divisions during exposure to spaceflight but a large number of apoptotic cells was also observed. Similar results were obtained in Schneider S-1 cells cultured under clinostat rotation. Both cell lines displayed mitochondria abnormalities and mitochondria clustering toward one side of the cells which is interpreted to be the result of microtubule disruption and failure of mitochondria transport along microtubules. The number of mitochondria was increased in cells exposed to altered gravity while cristae morphology was severely affected indicating altered mitochondria function. These results show that spaceflight as well as altered gravity produced by clinostat rotation affects microtubule and mitochondria organization and results in increases in apoptosis. Grant numbers: NAG 10-0224, NAG2-985.  相似文献   
487.
The high efficiency environmental benefits and other attributes of fuel cells have attracted world-wide attention to the technology. Approximately 250 phosphoric acid fuel cell (PAFC) power units, 35 molten carbonate fuel cell (MCFC) stacks, and 12 solid oxide fuel cell (SOFC) modules have been or are being operated. Total capacity installed or operating is close to 45 MW. Fuel cell development has progressed to where complete power plants have reached nearly 16,000 operating hours and this continues to increase. Developers in the U.S. and Japan have embarked on extensive government and private programs to commercialize the technology in those countries and abroad. By mid-1994, the U.S. sold and shipped to other countries at least 33 PAFC 200 kW plants, 20 675 kW PAFC stacks, two SOFC 25 kW modules, and one MCFC system. Additional units have been produced for the domestic market. There is intense interest in Japan where there are very stringent environmental regulations and fuel prices are high. The fuel cell can respond with its combined attributes of low emissions and relative high efficiency. In Europe, the environmental cleanliness of fuel cell power units holds the promise of preserving the quality of life, motivating support and development of the technology. Canada and Australia have spawned important development programs. Interest continues to increase in other parts of the world. The author reviews the 1994 status and outlines the future development trends in this area  相似文献   
488.
High resolution Hα images and magnetograms (0.2 arc s) of an active region were obtained in alternating time series at 42 s cadences using the Swedish 1-m Solar Telescope on 2004 August 21. The Hα filtergrams reveal an active region filament and surges consisting of thread-like structures which have widths similar to the widths of chromospheric fibrils, both recorded down to the resolution limit in the best images. All observed structures in the active region appear highly dynamic. Fibrils show counterstreaming strongly resembling the counterstreaming threads in filaments.  相似文献   
489.
An overview is presented of Antarctic and Arctic sea ice studies using data from the Nimbus-5 ESMR and the Nimbus-7 SMMR passive microwave radiometers. Four years (1973–1976) of ESMR data for the Antarctic Ocean define the characteristics of the seasonal cycle including regional contrasts and interannual variations. Major advances include the discovery of the Weddell polynya and the presence of substantial areas of open water in the Antarctic winter pack ice. Regional differences in sea ice extent on time-scales of about a month are shown to be associated with variations in surface-wind fields. In the Arctic, the computation of sea ice concentration is complicated by the presence of multiyear ice, but the amount of multiyear ice becomes an important measurable quantity with dual-polarized, multifrequency passive microwave sensors. Analysis of SMMR data demonstrates its advantage for studying the spatial and temporal variability of the Arctic ice cover. Large observed interannual variations in the distribution of the multiyear pack ice and the presence of significant divergent areas in the central Arctic during winter contrast markedly with the classical view of the Arctic pack ice.  相似文献   
490.
The Standard Radiation Environment Monitor (SREM) is a simple particle detector developed for wide application on ESA satellites. It measures high-energy protons and electrons of the space environment with a 20° angular resolution and limited spectral information. Of the ten SREMs that have been manufactured, four have so far flown. The first model on STRV-1c functioned well until an early spacecraft failure. The other three are on-board, the ESA spacecraft INTEGRAL, ROSETTA and PROBA-1. Another model is flying on GIOVE-B, launched in April 2008 with three L-2 science missions to follow: both Herschel and Planck in 2008, and GAIA in 2011). The diverse orbits of these spacecraft and the common calibration of the monitors provides a unique dataset covering a wide range of B-L* space, providing a direct comparison of the radiation levels in the belts at different locations, and the effects of geomagnetic shielding. Data from the PROBA/SREM and INTEGRAL/IREM are compared with existing radiation belt models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号