全文获取类型
收费全文 | 246篇 |
免费 | 0篇 |
国内免费 | 3篇 |
专业分类
航空 | 149篇 |
航天技术 | 50篇 |
综合类 | 1篇 |
航天 | 49篇 |
出版年
2022年 | 1篇 |
2021年 | 5篇 |
2019年 | 3篇 |
2018年 | 33篇 |
2017年 | 18篇 |
2016年 | 1篇 |
2015年 | 7篇 |
2014年 | 3篇 |
2013年 | 11篇 |
2012年 | 8篇 |
2011年 | 11篇 |
2010年 | 11篇 |
2009年 | 13篇 |
2008年 | 7篇 |
2007年 | 14篇 |
2006年 | 4篇 |
2005年 | 12篇 |
2004年 | 7篇 |
2003年 | 4篇 |
2002年 | 2篇 |
2001年 | 7篇 |
2000年 | 4篇 |
1999年 | 3篇 |
1998年 | 3篇 |
1997年 | 5篇 |
1996年 | 1篇 |
1995年 | 5篇 |
1994年 | 5篇 |
1993年 | 2篇 |
1992年 | 2篇 |
1986年 | 2篇 |
1985年 | 10篇 |
1984年 | 7篇 |
1983年 | 3篇 |
1982年 | 2篇 |
1981年 | 9篇 |
1978年 | 1篇 |
1970年 | 1篇 |
1967年 | 1篇 |
1963年 | 1篇 |
排序方式: 共有249条查询结果,搜索用时 15 毫秒
181.
Jean-Claude Hénoux 《Space Science Reviews》1998,85(1-2):215-226
In this review, the main models of ion-neutral frationation leading to an enhancement of the low FIP to high FIP abundance ratio in the corona or in the solar wind, are presented. Models based on diffusion parallel to the magnetic field are discussed; they are highly dependent on the boundary conditions. The magnetic field, that naturally separates ions from neutrals moving perpendicular to the field lines direction, when the ion-neutral frequency becomes lower than the ion gyrofrequency, is expected to play an active role in the ion-neutral separation. It is then suggested that ion-neutral fractionation is linked to the formation of the solar chromosphere, i.e. in magnetic flux-tubes at a temperature between 4000 and 6000 K. This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
182.
The Magnetic Field of the Earth’s Lithosphere 总被引:2,自引:0,他引:2
Erwan Thébault Michael Purucker Kathryn A. Whaler Benoit Langlais Terence J. Sabaka 《Space Science Reviews》2010,155(1-4):95-127
The lithospheric contribution to the Earth’s magnetic field is concealed in magnetic field data that have now been measured over several decades from ground to satellite altitudes. The lithospheric field results from the superposition of induced and remanent magnetisations. It therefore brings an essential constraint on the magnetic properties of rocks of the Earth’s sub-surface that would otherwise be difficult to characterize. Measuring, extracting, interpreting and even defining the magnetic field of the Earth’s lithosphere is however challenging. In this paper, we review the difficulties encountered. We briefly summarize the various contributions to the Earth’s magnetic field that hamper the correct identification of the lithospheric component. Such difficulties could be partially alleviated with the joint analysis of multi-level magnetic field observations, even though one cannot avoid making compromises in building models and maps of the magnetic field of the Earth’s lithosphere at various altitudes. Keeping in mind these compromises is crucial when lithospheric field models are interpreted and correlated with other geophysical information. We illustrate this discussion with recent advances and results that were exploited to infer statistical properties of the Earth’s lithosphere. The lessons learned in measuring and processing Earth’s magnetic field data may prove fruitful in planetary exploration, where magnetism is one of the few remotely accessible internal properties. 相似文献
183.
184.
ISO performed a large variety of observing programmes on comets, asteroids and zodiacal light – covering about 1% of the archived
observations – with a surprisingly rewarding scientific return. Outstanding results were related to the exceptionally bright
comet Hale–Bopp and to ISO's capability to study in detail the water spectrum in a direct way. But many other results were
broadly recognised: Discovery of new molecules in comets, the studies of crystalline silicates, the work on asteroid surface
mineralogy, results from thermophysical studies of asteroids, a new determination of the asteroid number density in the main-belt
and last but not least, the investigations on the spatial and spectral features of the zodiacal light. 相似文献
185.
186.
The volatile species released in the coma are an important clue to the composition of the cometary nucleus ices. Their identification and the measurement of their abundances is possible by remote sensing. Considerable progress has been made recently using radio and infrared spectroscopy, especially with the observations of the two exceptional comets C/1996 B2 (Hyakutake) and C/1995 O1 (Hale-Bopp).) 24 molecules likely to be parent molecules outgassed from the nucleus have now been identified. Significant upper limits exist for many other species, and the presence of unidentified lines suggests that further species are to be identified. In addition, isotopic varieties have been observed for hydrogen, carbon, nitrogen and sulphur. We will review these results with a special emphasis on the reliability of the identifications and of the molecular production rate determinations. A critical point is to assess whether a given species is a genuine parent molecule outgassed from nuclear ices, or is a secondary product coming from grains or from gas-phase photochemistry. Ground-based spectral imaging, such as radio interferometry, may help resolving this problem. This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
187.
Arnaud Masson Ondrej Santolík Donald L. Carpenter Fabien Darrouzet Pierrette M. E. Décréau Farida El-Lemdani Mazouz James L. Green Sandrine Grimald Mark B. Moldwin František Němec Vikas S. Sonwalkar 《Space Science Reviews》2009,145(1-2):137-191
This paper highlights significant advances in plasmaspheric wave research with Cluster and Image observations. This leap forward was made possible thanks to the new observational capabilities of these space missions. On one hand, the multipoint view of the four Cluster satellites, a unique capability, has enabled the estimation of wave characteristics impossible to derive from single spacecraft measurements. On the other hand, the Image experiments have enabled to relate large-scale plasmaspheric density structures with wave observations and provide radio soundings of the plasmasphere with unprecedented details. After a brief introduction on Cluster and Image wave instrumentation, a series of sections, each dedicated to a specific type of plasmaspheric wave, put into context the recent advances obtained by these two revolutionary missions. 相似文献
188.
Helmut Lammer Eric Chassefière Özgür Karatekin Achim Morschhauser Paul B. Niles Olivier Mousis Petra Odert Ute V. Möstl Doris Breuer Véronique Dehant Matthias Grott Hannes Gröller Ernst Hauber Lê Binh San Pham 《Space Science Reviews》2013,174(1-4):113-154
The evolution and escape of the martian atmosphere and the planet’s water inventory can be separated into an early and late evolutionary epoch. The first epoch started from the planet’s origin and lasted ~500 Myr. Because of the high EUV flux of the young Sun and Mars’ low gravity it was accompanied by hydrodynamic blow-off of hydrogen and strong thermal escape rates of dragged heavier species such as O and C atoms. After the main part of the protoatmosphere was lost, impact-related volatiles and mantle outgassing may have resulted in accumulation of a secondary CO2 atmosphere of a few tens to a few hundred mbar around ~4–4.3 Gyr ago. The evolution of the atmospheric surface pressure and water inventory of such a secondary atmosphere during the second epoch which lasted from the end of the Noachian until today was most likely determined by a complex interplay of various nonthermal atmospheric escape processes, impacts, carbonate precipitation, and serpentinization during the Hesperian and Amazonian epochs which led to the present day surface pressure. 相似文献
189.
Jéróme Pora 《航空维修与工程》2003,(6):50-52
A380超大型客机是目前仅有的采用全机身长度双层客舱的4通道客机、能容纳555名乘客。本文简要介绍了A380机体结构所采用的先进材料和制造技术。 相似文献
190.
Sherry H. Suyu Tzu-Ching Chang Frédéric Courbin Teppei Okumura 《Space Science Reviews》2018,214(5):91
We review three distance measurement techniques beyond the local universe: (1) gravitational lens time delays, (2) baryon acoustic oscillation (BAO), and (3) HI intensity mapping. We describe the principles and theory behind each method, the ingredients needed for measuring such distances, the current observational results, and future prospects. Time-delays from strongly lensed quasars currently provide constraints on \(H_{0}\) with \(<4\%\) uncertainty, and with \(1\%\) within reach from ongoing surveys and efforts. Recent exciting discoveries of strongly lensed supernovae hold great promise for time-delay cosmography. BAO features have been detected in redshift surveys up to \(z\lesssim0.8\) with galaxies and \(z\sim2\) with Ly-\(\alpha\) forest, providing precise distance measurements and \(H_{0}\) with \(<2\%\) uncertainty in flat \(\Lambda\)CDM. Future BAO surveys will probe the distance scale with percent-level precision. HI intensity mapping has great potential to map BAO distances at \(z\sim0.8\) and beyond with precisions of a few percent. The next years ahead will be exciting as various cosmological probes reach \(1\%\) uncertainty in determining \(H_{0}\), to assess the current tension in \(H_{0}\) measurements that could indicate new physics. 相似文献