首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   352篇
  免费   1篇
  国内免费   5篇
航空   153篇
航天技术   65篇
综合类   1篇
航天   139篇
  2021年   6篇
  2020年   4篇
  2019年   5篇
  2018年   12篇
  2017年   6篇
  2015年   2篇
  2014年   7篇
  2013年   9篇
  2012年   23篇
  2011年   36篇
  2010年   17篇
  2009年   23篇
  2008年   19篇
  2007年   22篇
  2006年   16篇
  2005年   25篇
  2004年   3篇
  2003年   15篇
  2002年   12篇
  2001年   4篇
  2000年   5篇
  1998年   6篇
  1997年   7篇
  1996年   3篇
  1995年   2篇
  1994年   4篇
  1993年   2篇
  1992年   4篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1985年   7篇
  1984年   4篇
  1983年   7篇
  1981年   2篇
  1980年   3篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   4篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
  1967年   6篇
  1966年   2篇
排序方式: 共有358条查询结果,搜索用时 15 毫秒
181.
We extend our large-scale kinetic (LSK) simulation of the magnetotail by including the global electrostatic effects generated by the field-aligned motion of electrons. Differences in electron and ion dynamics result in significant electrostatic fields near the current sheet (especially near X-lines) and in the auroral zone. In addition, Eƒ and E alter the ion precipitation profile and affect particle loss from the system through the flanks and downtail. This work provides a basis for including transverse electron currents in our calculations.  相似文献   
182.
From computers to aeronautics, many industries have achieved great cost savings through the use of modular engineering approaches. In standardizing interfaces between elements and by reusing functional units, projects can achieve direct reductions in required development labor and secondary savings from enhanced reliability via improved process control from manufacturing identical units. Issues involved in the extension of modular design to the space industry are discussed. A cost model is developed to resolve some of the conflicting advantages and disadvantages between modular and customized designs. Key regimes are identified that represent the best opportunities for applying modular concepts.  相似文献   
183.
The Gravity Recovery and Interior Laboratory (GRAIL) is a spacecraft-to-spacecraft tracking mission that was developed to map the structure of the lunar interior by producing a detailed map of the gravity field. The resulting model of the interior will be used to address outstanding questions regarding the Moon’s thermal evolution, and will be applicable more generally to the evolution of all terrestrial planets. Each GRAIL orbiter contains a Lunar Gravity Ranging System instrument that conducts dual-one-way ranging measurements to measure precisely the relative motion between them, which in turn are used to develop the lunar gravity field map. Each orbiter also carries an Education/Public Outreach payload, Moon Knowledge Acquired by Middle-School Students (MoonKAM), in which middle school students target images of the Moon for subsequent classroom analysis. Subsequent to a successful launch on September 10, 2011, the twin GRAIL orbiters embarked on independent trajectories on a 3.5-month-long cruise to the Moon via the EL-1 Lagrange point. The spacecraft were inserted into polar orbits on December 31, 2011 and January 1, 2012. After a succession of 19 maneuvers the two orbiters settled into precision formation to begin science operations in March 1, 2012 with an average altitude of 55 km. The Primary Mission, which consisted of three 27.3-day mapping cycles, was successfully completed in June 2012. The extended mission will permit a second three-month mapping phase at an average altitude of 23 km. This paper provides an overview of the mission: science objectives and measurements, spacecraft and instruments, mission development and design, and data flow and data products.  相似文献   
184.
In this paper we present recent additions to the visualization toolset offered by the Community Coordinated Modeling Center (CCMC). Two suites of visualization tools are available that can address different needs during the analysis of model simulations of the magnetosphere that are provided by the CCMC. The online, server-side visualization allows the user to quickly browse through simulation runs and now can create maps of magnetic field line topology in the magnetosphere. The second tool, SWX, can be used on the client computer after data have been downloaded. With this second tool the user can interact directly with the three-dimensional objects that are being rendered. We present results from a simulation of a Flux Transfer Event that was performed at the CCMC using a magnetohydrodynamic model of the Earth’s magnetosphere with a high resolution grid focused on the dayside magnetosheath and dayside magnetopause. The simulation shows that the FTE that results from localized magnetic reconnection is a complicated three-dimensional structure that requires modern visualization techniques. Visualization techniques that are presented here allow the researcher to fully appreciate the complexity contained in magnetospheric simulation results.  相似文献   
185.
4D Lattice Flower Constellations is a new constellation design framework, based on the previous 2D and 3D Lattice theories of Flower Constellations, that focus on the generation of constellations whose satellites can have different semi-major axis and still present a constellation structure that is maintained during the dynamic of the system. This situation can arise when dealing with satellites with very different instruments, or when it is of interest to coordinate two different constellations. In that sense, 4D Lattice Flower Constellations constitutes the most general representation of the Flower Constellation formulation. In addition, the effects of the J2 perturbation are taken into account in order to generate distributions that maintain their initial design configuration under this perturbation for longer periods of time with a low fuel budget. Finally, examples of application are presented, showing the possibilities in satellite constellation design of this new approach.  相似文献   
186.
In recent years, Kalman filtering has emerged as a suitable technique to determine terrestrial reference frames (TRFs), a prime example being JTRF2014. The time series approach allows variations of station coordinates that are neither reduced by observational corrections nor considered in the functional model to be taken into account. These variations are primarily due to non-tidal geophysical loading effects that are not reduced according to the current IERS Conventions (2010). It is standard practice that the process noise models applied in Kalman filter TRF solutions are derived from time series of loading displacements and account for station dependent differences. So far, it has been assumed that the parameters of these process noise models are constant over time. However, due to the presence of seasonal and irregular variations, this assumption does not truly reflect reality. In this study, we derive a station coordinate process noise model allowing for such temporal variations. This process noise model and one that is a parameterized version of the former are applied in the computation of TRF solutions based on very long baseline interferometry data. In comparison with a solution based on a constant process noise model, we find that the station coordinates are affected at the millimeter level.  相似文献   
187.
Space Science Reviews - Part of the InSight mission, the SEIS instrument (Seismic Experiment for Interior Structures), is planned to arrive on Mars in November 2018. In order to prepare its future...  相似文献   
188.
Accurate Solar Radiation Pressure (SRP) modelling is critical for correctly describing the dynamics of satellites. A shadow function is a unitless quantity varying between 0 and 1 to scale the solar radiation flux at a satellite’s location during eclipses. Errors in modelling shadow function lead to inaccuracy in SRP that degrades the orbit quality. Shadow function modelling requires solutions to a geometrical problem (Earth’s oblateness) and a physical problem (atmospheric effects). This study presents a new shadow function model (PPM_atm) which uses a perspective projection based approach to solve the geometrical problem rigorously and a linear function to describe the reduction of solar radiation flux due to atmospheric effects. GRACE (Gravity Recovery And Climate Experiment) satellites carry accelerometers that record variations of non-conservative forces, which reveal the variations of shadow function during eclipses. In this study, the PPM_atm is validated using accelerometer observations of the GRACE-A satellite. Test results show that the PPM_atm is closer to the variations in accelerometer observations than the widely used SECM (Spherical Earth Conical Model). Taking the accelerometer observations derived shadow function as the “truth”, the relative error in PPM_atm is ?0.79% while the SECM 11.07%. The influence of the PPM_atm is also shown in orbit prediction for Galileo satellites. Compared with the SECM, the PPM_atm can reduce the radial orbit error RMS by 5.6?cm over a 7-day prediction. The impacts of the errors in shadow function modelling on the orbit remain to be systematic and should be mitigated in long-term orbit prediction.  相似文献   
189.
Data assimilation in conventional meteorological applications uses measurements in conjunction with a physical model. In the case of the ionised region of the upper atmosphere, the ionosphere, assimilation techniques are much less mature. The empirical model known as the International Reference Ionosphere (IRI) could be used to augment data-sparse regions in an ionospheric now-cast and forecast system. In doing so, it is important that it does not introduce systematic biases to the result. Here, the IRI model is compared to ionospheric observations from the Global Positioning System satellites over Europe and North America. Global Positioning System data are processed into hour-to-hour monthly averages of vertical Total Electron Content using a tomographic technique. A period of twelve years, from January 1998 to December 2009, is analysed in order to capture variations over the whole solar cycle. The study shows that the IRI model underestimates Total Electron Content in the daytime at solar maximum by up to 37% compared to the monthly average of GPS tomographic images, with the greatest differences occurring at the equinox. IRI shows good agreement at other times. Errors in TEC are likely due to peak height and density inaccuracies. IRI is therefore a suitable model for specification of monthly averages of Total Electron Content and can be used to initialise a data assimilation process at times away from solar maximum. It may be necessary to correct for systematic deviations from IRI at solar maximum, and to incorporate error estimation into a data assimilation scheme.  相似文献   
190.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号