The goal of the study was to characterize the changes in neurovegetative control of the circulation, attending the presumed physiological and psychological stress originated by the isolation and confinement typical of the living condition of space stations, as simulated in a ground based unit, using time and frequency domain analysis. As a secondary goal we sought to verify the implementation of real time data acquisition, for off line spectral analisys of R-R interval, systolic arterial pressure (by Finapres) and respiration (by PVF2 piezoelectric sensors).
We addressed the cardiorespiratory and neurovegetative responses to standardized, simple Stressors (active standing, dynamic and static handgrip) on the EXEMSI 92 crew, before, during and after the isolation period.
On average the appropriate excitatory responses (to stand, dynamic and static handgrip) were elicited also in isolation and confinement.
Active standing and small masses muscular exercises are easy to be performed in a confined and isolated environment and provide a valuable tool for investigating the adaptational changes in neural control mechanisms.
The possibility there exists of using this time and frequency domain approach to monitor the level of performance and well being of the space crew in (quasi) real time. 相似文献
Cardiovascular assessment by ultrasound methods was performed during two long duration (1 month) Head Down Tilt (HDT) on 6 healthy volunteers. On a first 1 month HDT session, 3 of the 6 subjects (A, B, C) had daily several lower body negative pressure tests (LBNP), whereas the 3 subjects remaining (D, E, F) rested without LBNP. On a second 1 month HDT session subjects D, E, and F had daily LBNP tests and the A, B and C subjects did not. The cardiac function was assessed by Echocardiography, (B mode, TM mode). On all the "6 non LBNP" subjects the left ventricule diastolic volume (LVDV), the stroke volume (SV) and the cardiac output (CO) increase (+10%, -15%) after HDT then decrease and remain inferior (-5%, -5%) or equal to the basal value during the HDT. Immediately after the end of the HDT the heart rate (HR) increase (+10%, +30%) whereas the cardiac parameters decrease weakly (-5%, -10%) and normalize after 3 days of recovery. On the "6 LBNP" subjects the LVDV, SV and CO increase (+10%, 15%) after 1 h HDT as in the previous group then decrease but remain superior (+5%, +15%) or equal to the basal value. After the HDT session, the HR is markedly increased (+20%, +40%) the LVDV and SV decrease (-15%, -20%) whereas the CO increases or decreases depending on the amplitude of the HR variations. These parameters do not completely normalize after 3 day's recovery. Repeated LBNP sessions have a significant effect on the cardiovascular function as it maintains all cardiac parameters above the basal value. The LBNP manoeuvre can be considered as an efficient countermeasure to prevent cardiac disadaptation induced by HDT position and probably microgravity. 相似文献
First work of a direct broadcasting satellite was initiated 1971 in the German industry by the German Ministry of Technology and Research. Besides of hardware development different studies on system level were conducted which reflected the needs of the respective time periods. For the moment Germany entered the design phase of a broadcasting satellite project, which is called TV-SAT. This paper describes briefly the history of the German broadcasting satellite activities since 1971 and informs about the work which is under the way in the TV-SAT program. 相似文献
Preflight training frequently has been proposed as a potential solution to the problem of space motion sickness. The paper considers successively the otolith reinterpretation, the concept for a preflight adaptation trainer and the research with the Miami University Seesaw, the Wright Patterson Air-Force Base Dynamic Environment Simulator and the Visually Coupled Airborne Systems Simulator prototype adaptation trainers. 相似文献
Impact cratering as a geologic process on the terrestrial planets is addressed. The crater densities on the Earth and Moon form the basis for a standard flux-time curve, which can be used to date unsampled planetary surfaces and constrain the temporal history of endogenic geologic processes. The attached uncertainties and the shape of the flux curve (a rapid exponential decay for the period 4.6 – 4.0 by, followed by the establishment of a constant fluid by 3.5 – 3.0 by which continues more or less to the present) are such that only very old (3.8 by) and very young ( 1.0 by) surfaces can be dated with some confidence. Dating of intermediate-aged surfaces is more imprecise; a problem which is most significant for the geologic history of Mars.
The cratering mechanics of simple craters are fairly well understood. A transient cavity of roughly parabolic cross-section results from the combined excavation and displacement of the target rocks by the cratering flow-field, which can be approximated by the Z-model derived from shallow-buried explosive events. The walls of the transient crater are unstable and slump inwards, resulting in a final bowl-shaped crater partially filled by breccia. The formation process of larger, shallow complex structures is less well understood. Recent models favor the complete collapse of the initial cavity, with the dynamic uplift of the excavated cavity floor. Regardless of the driving force for uplift, yield strength of the target rocks must be drastically reduced during cavity modification by an, as yet, imprecisely known process.
The formation of large impact basins had a profound effect on planetary evolution. They define the basic tectonic and stratigraphic framework of the Moon and their secondary effects lasted for 108 y. The evidence is less compelling from other planets, but a general feature appears to be the concentration of later endogenic activity in and around basins. On Earth, it is possible that basin-formation contributed to the establishment of the dichotomy between proto-continental and proto-oceanic crusts. The effects of impact continue into recent geologic history and may be linked to major biological changes on Earth, such as at the Cretaceous-Tertiary boundary. 相似文献
The ion formation processes by dust impacts have been studied qualitatively as well as quantitatively by dust accelerator laboratory measurements. Iron, carbon and metallized glass particles in the femto- to nano-gram mass range had been impacted on various metal targets in a velocity regime of v = 2 - 64 km/s. In the high velocity regime as relevant for the (retrograde) Halley encounter more than 99% of the ions produced are singly charged atomic, the rest molecular ones. The ion/atom ratios are apparently modified SIMS yields, the modification parameter being impact velocity dependent. A semiempirical formula was deduced for the determination of mass and density of the impacting particle from target and projectile ion yields. When evaluating the Halley encounter results, the elemental distribution of p/Halley dust appeared nearly to be solar; the organic fraction (CHON) could be characterized in a rough manner as fairly unsaturated. Oligomers of the monomers C2H2 (65%), CH2O (25%), and HCN (10%) are probable.
With medium velocities (for prograde comet encounter), i.e. v = 15-30 km/s molecular ion types govern the mass spectra. Consequently, more chemical information of the projectile can be expected in this case, additional to the elemental distribution. Mass and density of the impinging dust particles can be determined as well. 相似文献