首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   345篇
  免费   1篇
  国内免费   5篇
航空   150篇
航天技术   64篇
综合类   1篇
航天   136篇
  2021年   6篇
  2020年   4篇
  2019年   5篇
  2018年   11篇
  2017年   6篇
  2015年   2篇
  2014年   7篇
  2013年   9篇
  2012年   23篇
  2011年   36篇
  2010年   17篇
  2009年   23篇
  2008年   18篇
  2007年   21篇
  2006年   16篇
  2005年   25篇
  2004年   3篇
  2003年   14篇
  2002年   12篇
  2001年   4篇
  2000年   5篇
  1998年   6篇
  1997年   7篇
  1996年   3篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   4篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1985年   6篇
  1984年   4篇
  1983年   7篇
  1981年   2篇
  1980年   3篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   4篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
  1967年   6篇
  1966年   2篇
排序方式: 共有351条查询结果,搜索用时 31 毫秒
261.
Abstract The Life Marker Chip (LMC) instrument is part of the proposed payload on the ESA ExoMars rover that is scheduled for launch in 2018. The LMC will use antibody-based assays to detect molecular signatures of life in samples obtained from the shallow subsurface of Mars. For the LMC antibodies, the ability to resist inactivation due to space particle radiation (both in transit and on the surface of Mars) will therefore be a prerequisite. The proton and neutron components of the mission radiation environment are those that are expected to have the dominant effect on the operation of the LMC. Modeling of the radiation environment for a mission to Mars led to the calculation of nominal mission fluences for proton and neutron radiation. Various combinations and multiples of these values were used to demonstrate the effects of radiation on antibody activity, primarily at the radiation levels envisaged for the ExoMars mission as well as at much higher levels. Five antibodies were freeze-dried in a variety of protective molecular matrices and were exposed to various radiation conditions generated at a cyclotron facility. After exposure, the antibodies' ability to bind to their respective antigens was assessed and found to be unaffected by ExoMars mission level radiation doses. These experiments indicated that the expected radiation environment of a Mars mission does not pose a significant risk to antibodies packaged in the form anticipated for the LMC instrument. Key Words: Life-detection instruments-Planetary habitability and biosignatures-Radiation-Mars-Life in extreme environments. Astrobiology 12, 718-729.  相似文献   
262.
263.
As photosynthesis on Earth produces the primary signatures of life that can be detected astronomically at the global scale, a strong focus of the search for extrasolar life will be photosynthesis, particularly photosynthesis that has evolved with a different parent star. We take previously simulated planetary atmospheric compositions for Earth-like planets around observed F2V and K2V, modeled M1V and M5V stars, and around the active M4.5V star AD Leo; our scenarios use Earth's atmospheric composition as well as very low O2 content in case anoxygenic photosynthesis dominates. With a line-by-line radiative transfer model, we calculate the incident spectral photon flux densities at the surface of the planet and under water. We identify bands of available photosynthetically relevant radiation and find that photosynthetic pigments on planets around F2V stars may peak in absorbance in the blue, K2V in the red-orange, and M stars in the near-infrared, in bands at 0.93-1.1 microm, 1.1-1.4 microm, 1.5-1.8 microm, and 1.8-2.5 microm. However, underwater organisms will be restricted to wavelengths shorter than 1.4 microm and more likely below 1.1 microm. M star planets without oxygenic photosynthesis will have photon fluxes above 1.6 microm curtailed by methane. Longer-wavelength, multi-photo-system series would reduce the quantum yield but could allow for oxygenic photosystems at longer wavelengths. A wavelength of 1.1 microm is a possible upper cutoff for electronic transitions versus only vibrational energy; however, this cutoff is not strict, since such energetics depend on molecular configuration. M star planets could be a half to a tenth as productive as Earth in the visible, but exceed Earth if useful photons extend to 1.1 microm for anoxygenic photosynthesis. Under water, organisms would still be able to survive ultraviolet flares from young M stars and acquire adequate light for growth.  相似文献   
264.
Recent data from space missions reveal that there are ongoing climatic changes and erosive processes that continuously modify surface features of Mars. We have investigated the seasonal dynamics of a number of morphological features located at Inca City, a representative area at high southern latitude that has undergone seasonal processes. By integrating visual information from the Mars Orbiter Camera on board the Mars Global Surveyor and climatic cycles from a Mars' General Circulation Model, and considering the recently reported evidence for the presence of water-ice and aqueous precipitates on Mars, we propose that a number of the erosive features identified in Inca City, among them spiders, result from the seasonal melting of aqueous salty solutions.  相似文献   
265.
We investigate a new mechanism for producing oxidants, especially hydrogen peroxide (H2O2), on Mars. Large-scale electrostatic fields generated by charged sand and dust in the martian dust devils and storms, as well as during normal saltation, can induce chemical changes near and above the surface of Mars. The most dramatic effect is found in the production of H2O2 whose atmospheric abundance in the "vapor" phase can exceed 200 times that produced by photochemistry alone. With large electric fields, H2O2 abundance gets large enough for condensation to occur, followed by precipitation out of the atmosphere. Large quantities of H2O2 would then be adsorbed into the regolith, either as solid H2O2 "dust" or as re-evaporated vapor if the solid does not survive as it diffuses from its production region close to the surface. We suggest that this H2O2, or another superoxide processed from it in the surface, may be responsible for scavenging organic material from Mars. The presence of H2O2 in the surface could also accelerate the loss of methane from the atmosphere, thus requiring a larger source for maintaining a steady-state abundance of methane on Mars. The surface oxidants, together with storm electric fields and the harmful ultraviolet radiation that readily passes through the thin martian atmosphere, are likely to render the surface of Mars inhospitable to life as we know it.  相似文献   
266.
A NanoSIMS ion microprobe was used to map the submicron-scale distributions of carbon, nitrogen, sulfur, silicon, and oxygen in organic microfossils and laminae in a thin section of the approximately 0.85 billion year old Bitter Springs Formation of Australia. The data provide clues about the original chemistry of the microfossils, the silicification process, and the biosignatures of specific microorganisms and microbial communities. Chemical maps of fossil unicells and filaments revealed distinct wall- and sheath-like structures enriched in C, N, and S, consistent with their accepted biological origin. Surprisingly, organic laminae, previously considered to be amorphous, also exhibited filamentous and apparently compressed spheroidal structures defined by strong enrichments in C, N, and S. By analogy to NanoSIMS data from the well-preserved microfossils, these structures were interpreted as being of biological origin, most likely representing densely packed remnants of microbial mats. Given that the preponderance of organic matter in Precambrian sediments is similarly "amorphous," our findings indicate that a re-evaluation of ancient specimens via in situ structural, chemical, and isotopic study is warranted. Our analyses have led us to propose new criteria for assessing the biogenicity of problematic kerogenous materials, and, thus, these criteria can be applied to assessments of poorly preserved or fragmentary organic residues in early Archean sediments and any that might occur in meteorites or other extraterrestrial samples.  相似文献   
267.
TARANIS “Tool for the Analysis of RAdiations from lightNIngs and Sprites” is a CNES satellite project dedicated to the study of impulsive transfers of energy between the Earth atmosphere and the space environment. Such impulsive transfers of energy, identified by the observation at ground and in space (rocket, balloons, FORMOSAT 2 satellite) of Transient Luminous Events (TLEs) and the detection on satellites (CGRO, RHESSI) of Terrestrial Gamma ray Flashes (TGFs), are likely to occur in other astrophysical environments as well. The TARANIS mission and instrumentation is presented. The way the TARANIS programme (associated ground-based and balloon-based measurements included) may answer questions about the physics of TLEs and TGFs is examined. The questions addressed include: TLEs and TGFs source regions, associated phenomena, transfers of energy between the radiation belts and the atmosphere, TLEs and TGFs generation mechanisms, input parameters to the modelling of the variation of the atmosphere and the electric circuit.  相似文献   
268.
Using economic incentives to control costs is a new concept for space missions. The basic tenets of market-based approaches run counter to typical centralized management techniques often utilized for complex space missions. NASA's Cassini mission to Saturn used a market trading system to assist the Science Instrument Manager in guiding the development of the spacecraft's science payload. This system allowed science instrument teams to trade resources among themselves to best manage their resources (mass, power, data rate, and budget). Thus, Cassini Project management was no longer responsible for adjudicating and reallocating resources that result from instrument development problems. Instrument teams were responsible for directly managing their resources and if they ran into a development problem it was their responsibility to resolve their problem by descoping or through the use of a 'resource exchange.' Under the trading system, instrument cost growth was less than 1% and the total payload mass was under its allocation by 7%. This result is in stark contrast to the 50%–100% increases in these resources on past missions.  相似文献   
269.
用于直升机振动控制的主动调谐式吸振器研究   总被引:3,自引:0,他引:3  
陈勇 《中国航空学报》2003,16(4):203-211
振动问题是直升机设计中的难题,会导致机体结构疲劳、舒适性降低和高噪声等问题。通常的单桨叶控制方案由于受压电驱动器机电性能的限制而难以实现。智能弹簧是一种采用单桨叶控制原理的主动调谐式吸振器,它通过压电驱动器自适应控制桨叶根部的结构阻抗,达到振动控制目的。建立了智能弹簧的简化模型,对其谐波响应控制特性进行研究;采用频率分析和数字信号合成技术产生参考信号,在DSP平台上设计自适应陷波算法对智能弹簧驱动器组件进行控制;模拟和风洞实验结果均表明智能弹簧能够在较宽频率范围内对桨叶的谐波响应进行有效控制,验证了通过主动阻抗控制实现直升机桨叶振动控制的可行性。  相似文献   
270.
Physical properties of the natural satellites   总被引:1,自引:0,他引:1  
This paper reviews the physical nature of the satellites of the planets, excluding the Moon but including the rings of Saturn. Emphasis is placed on the best studied objects: Titan, Phobos and Deimos, the four Galilean satellites (Io, Europa, Ganymede, and Callisto), and the rings of Saturn.The authors dedicate this paper to the memory of Gerard P. Kuiper, who died on 24 December 1973. It was his pioneering research begun in the early 1940's that opened the era of physical studies of the satellites. That work, together with his lifelong study of the origin of the system of planets and satellites, provided the foundation upon which much of the work reviewed in this paper is based.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号