全文获取类型
收费全文 | 2255篇 |
免费 | 10篇 |
国内免费 | 10篇 |
专业分类
航空 | 1090篇 |
航天技术 | 817篇 |
综合类 | 10篇 |
航天 | 358篇 |
出版年
2021年 | 22篇 |
2018年 | 38篇 |
2017年 | 21篇 |
2016年 | 26篇 |
2014年 | 48篇 |
2013年 | 57篇 |
2012年 | 49篇 |
2011年 | 91篇 |
2010年 | 64篇 |
2009年 | 90篇 |
2008年 | 97篇 |
2007年 | 52篇 |
2006年 | 43篇 |
2005年 | 57篇 |
2004年 | 70篇 |
2003年 | 72篇 |
2002年 | 37篇 |
2001年 | 57篇 |
2000年 | 39篇 |
1999年 | 47篇 |
1998年 | 67篇 |
1997年 | 42篇 |
1996年 | 67篇 |
1995年 | 79篇 |
1994年 | 55篇 |
1993年 | 49篇 |
1992年 | 64篇 |
1991年 | 30篇 |
1990年 | 19篇 |
1989年 | 49篇 |
1988年 | 23篇 |
1987年 | 20篇 |
1986年 | 21篇 |
1985年 | 85篇 |
1984年 | 53篇 |
1983年 | 53篇 |
1982年 | 60篇 |
1981年 | 72篇 |
1980年 | 21篇 |
1979年 | 26篇 |
1978年 | 26篇 |
1977年 | 26篇 |
1976年 | 20篇 |
1975年 | 20篇 |
1974年 | 20篇 |
1973年 | 11篇 |
1972年 | 14篇 |
1970年 | 18篇 |
1969年 | 19篇 |
1967年 | 10篇 |
排序方式: 共有2275条查询结果,搜索用时 15 毫秒
131.
S. Carbone L.F. Padilha M.B. Rosa D.K. Pinheiro N.J. Schuch 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2006,37(12):2178-II
The first estimations of the aerosol optical thickness (AOT) using Langley Method at Southern Space Observatory (SSO) at Southern Brazil (29.4°S, 53.8°W) are presented. In addition to ozone and sulphur dioxide columns, AOT can be obtained using Brewer Spectrophotometer at specific wavelengths: 306.3, 310.1, 313.5, 316.8 and 320.1 nm. The AOT was obtained for the period from November/2002 to May/2003. Very low AOT averages were obtained, whose values were about 0.21 ± 0.03 at 306.3 nm, 0.21 ± 0.02 at 310.1 nm, 0.19 ± 0.02 at 313.5 nm, 0.20 ± 0.02 at 316.8 nm and 0.20 ± 0.02 at 320.0 nm for all period analysed. Different behaviour of AOT were obtained at two daily specific periods of aerosol accumulation, one in the afternoons from November/2002 to February/2003, caused mainly by a mild biomass burning season’s in the region and other in the mornings from March to May/2003, due the high relative humidity presented in the region studied. 相似文献
132.
F. Capitanio A. Bazzano P. Ubertini G. De Cesare M. Del Santo A. Tarana A. Joinet 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2006,38(12):2816-2819
On March 2003, IBIS, the γ-ray imager on board the INTEGRAL satellite, detected an outburst from a new source, IGR J17464-3213, that turned out to be an HEAO-1 transient, namely H1743-322. The spectral and temporal evolutions of the source were observed by INTEGRAL in different periods. Also RXTE observed the source for the first time on 2003 March 29 during a PCA Galactic bulge scan. The source flux decayed below the RXTE PCA sensitivity limit in November 2003, then in April 2004 it was again detected by INTEGRAL. On July 3, 2004 the source was again detected by RXTE/PCA at a 2–10 keV intensity of 16 mCrab and on July 7, reached 69 mCrab. Recently, a new outburst was observed on August 2005. We briefly summarise here the behaviour of the source observed by INTEGRAL from March 2003 to August 2005. The new outbursts of the source and the analysis of all the data collected (now public) give a global view of the spectral and time behaviour of this X-ray transient. 相似文献
133.
Cosmic radiation has been measured by a variety of techniques since 1933. This paper presents the evolution of data acquisition, processing, and availability of cosmic radiation data from the early years to the present time. Information on the worldwide network of neutron monitor stations and the availability of these cosmic radiation records is included. This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
134.
Green J.L. Benson R.F. Fung S.F. Taylor W.W.L. Boardsen S.A. Reinisch B.W. Haines D.M. Bibl K. Cheney G. Galkin I.A. Huang X. Myers S.H. Sales G.S. Bougeret J.-L. Manning R. Meyer-Vernet N. Moncuquet M. Carpenter D.L. Gallagher D.L. Reiff P.H. 《Space Science Reviews》2000,91(1-2):361-389
The Radio Plasma Imager (RPI) will be the first-of-its kind instrument designed to use radio wave sounding techniques to perform repetitive remote sensing measurements of electron number density (N
e) structures and the dynamics of the magnetosphere and plasmasphere. RPI will fly on the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) mission to be launched early in the year 2000. The design of the RPI is based on recent advances in radio transmitter and receiver design and modern digital processing techniques perfected for ground-based ionospheric sounding over the last two decades. Free-space electromagnetic waves transmitted by the RPI located in the low-density magnetospheric cavity will be reflected at distant plasma cutoffs. The location and characteristics of the plasma at those remote reflection points can then be derived from measurements of the echo amplitude, phase, delay time, frequency, polarization, Doppler shift, and echo direction. The 500 m tip-to-tip X and Y (spin plane) antennas and 20 m Z axis antenna on RPI will be used to measures echoes coming from distances of several R
E. RPI will operate at frequencies between 3 kHz to 3 MHz and will provide quantitative N
e values from 10–1 to 105 cm–3. Ray tracing calculations, combined with specific radio imager instrument characteristics, enables simulations of RPI measurements. These simulations have been performed throughout an IMAGE orbit and under different model magnetospheric conditions. They dramatically show that radio sounding can be used quite successfully to measure a wealth of magnetospheric phenomena such as magnetopause boundary motions and plasmapause dynamics. The radio imaging technique will provide a truly exciting opportunity to study global magnetospheric dynamics in a way that was never before possible. 相似文献
135.
Structure of a two-phase flow of boiling water at low-head adiabatic efflux through the laval nozzle
The critical flow conditions and structural forms of a two-phase flow that is formed during water efflux from the region of moderate and low pressures into a rarefied medium are analyzed. The difference in the structural forms of a flow realized at the low-head efflux from the structure of a flow occurring in the fluid flow with moderate and high initial pressures is established. The critical pressure differential characterizing the establishment of the maximum flowrate is determined and the decisive influence of turbulence on the vapor phase generation and flow conditions of a two-phase medium is shown. 相似文献
136.
J. Wicht M. Mandea F. Takahashi U. R. Christensen M. Matsushima B. Langlais 《Space Science Reviews》2007,132(2-4):261-290
Mariner 10 measurements proved the existence of a large-scale internal magnetic field on Mercury. The observed field amplitude,
however, is too weak to be compatible with typical convective planetary dynamos. The Lorentz force based on an extrapolation
of Mariner 10 data to the dynamo region is 10−4 times smaller than the Coriolis force. This is at odds with the idea that planetary dynamos are thought to work in the so-called
magnetostrophic regime, where Coriolis force and Lorentz force should be of comparable magnitude. Recent convective dynamo
simulations reviewed here seem to resolve this caveat. We show that the available convective power indeed suffices to drive
a magnetostrophic dynamo even when the heat flow though Mercury’s core–mantle boundary is subadiabatic, as suggested by thermal
evolution models. Two possible causes are analyzed that could explain why the observations do not reflect a stronger internal
field. First, toroidal magnetic fields can be strong but are confined to the conductive core, and second, the observations
do not resolve potentially strong small-scale contributions. We review different dynamo simulations that promote either or
both effects by (1) strongly driving convection, (2) assuming a particularly small inner core, or (3) assuming a very large
inner core. These models still fall somewhat short of explaining the low amplitude of Mariner 10 observations, but the incorporation
of an additional effect helps to reach this goal: The subadiabatic heat flow through Mercury’s core–mantle boundary may cause
the outer part of the core to be stably stratified, which would largely exclude convective motions in this region. The magnetic
field, which is small scale, strong, and very time dependent in the lower convective part of the core, must diffuse through
the stagnant layer. Here, the electromagnetic skin effect filters out the more rapidly varying high-order contributions and
mainly leaves behind the weaker and slower varying dipole and quadrupole components (Christensen in Nature 444:1056–1058,
2006). Messenger and BepiColombo data will allow us to discriminate between the various models in terms of the magnetic fields
spatial structure, its degree of axisymmetry, and its secular variation. 相似文献
137.
Klumpar D.M. Möbius E. Kistler L.M. Popecki M. Hertzberg E. Crocker K. Granoff M. Tang Li Carlson C.W. McFadden J. Klecker B. Eberl F. Künneth E. Kästle H. Ertl M. Peterson W.K. Shelly E.G. Hovestadt D. 《Space Science Reviews》2001,98(1-2):197-219
The Time-of-flight Energy Angle Mass Spectrograph (TEAMS) is being flown on the FAST Small Explorer mission to measure the 3-dimensional distribution function of the major ion species present in the lower magnetosphere. The instrument is similar to time-of-flight plasma analyzer systems that have been designed and planned for flight as CODIF (COmposition and DIstribution Function analyzer) on the four European Space Agency Cluster-II spacecraft and, as ESIC (Equator-S Ion Composition instrument) on Equator-S. This instrument allows the 3-dimensional distribution functions of individual ion species to be determined within
spin period (2.5 s). Two-dimensional distributions are measured in 80 ms. These capabilities are crucial for the study of selective energization processes in the auroral regions of the magnetosphere. The design, operational characteristics, and test and calibration results for this instrument are presented. The sensor consists of a toroidal top-hat electrostatic analyzer with instantaneous acceptance of ions over 360° in polar angle. After post-acceleration of the incoming ions by up to 25 kV, a time-of-flight mass spectrograph discriminates the individual species. It has been demonstrated through calibration that the instrument can easily separate H+, He2+, He+, O+ and, for energies after post-acceleration of > 20 keV, even O2
+ molecules. On-board mass discrimination and the internal accumulation of several distinct data quantities combined with the spacecraft's flexible telemetry formatting allow for instrument data rates from 7.8 kb s–1 to 315 kb s–1 to be telemetered to ground through the FAST centralized Instrument Data Processor. 相似文献
138.
Israel G. Cabane M. Brun J-F. Niemann H. Way S. Riedler W. Steller M. Raulin F. Coscia D. 《Space Science Reviews》2002,104(1-4):433-468
ACP's main objective is the chemical analysis of the aerosols in Titan's atmosphere. For this purpose, it will sample the
aerosols during descent and prepare the collected matter (by evaporation, pyrolysis and gas products transfer) for analysis
by the Huygens Gas Chromatograph Mass Spectrometer (GCMS). A sampling system is required for sampling the aerosols in the
135'32 km and 22'17 km altitude regions of Titan's atmosphere. A pump unit is used to force the gas flow through a filter.
In its sampling position, the filter front face extends a few mm beyond the inlet tube. The oven is a pyrolysis furnace where
a heating element can heat the filter and hence the sampled aerosols to 250 °C or 600 °C. The oven contains the filter, which
has a thimble-like shape (height 28 mm). For transferring effluent gas and pyrolysis products to GCMS, the carrier gas is
a labeled nitrogen 15N2, to avoid unwanted secondary reactions with Titan's atmospheric nitrogen.
Aeraulic tests under cold temperature conditions were conducted by using a cold gas test system developed by ONERA. The objective
of the test was to demonstrate the functional ability of the instrument during the descent of the probe and to understand
its thermal behavior, that is to test the performance of all its components, pump unit and mechanisms.
In order to validate ACP's scientific performance, pyrolysis tests were conducted at LISA on solid phase material synthesized
from experimental simulation. The chromatogram obtained by GCMS analysis shows many organic compounds. Some GC peaks appear
clearly from the total mass spectra, with specific ions well identified thanks to the very high sensitivity of the mass spectrometer.
The program selected for calibrating the flight model is directly linked to the GCMS calibration plan. In order not to pollute
the two flight models with products of solid samples such as tholins, we excluded any direct pyrolysis tests through the ACP
oven during the first phase of the calibration. Post probe descent simulation of flight results are planned, using the much
representative GCMS and ACP spare models.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
139.
C.J. Hailey T. Aramaki S.E. Boggs P.v. Doetinchem H. Fuke F. Gahbauer J.E. Koglin N. Madden S.A.I. Mognet R. Ong T. Yoshida T. Zhang J.A. Zweerink 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
The General Antiparticle Spectrometer (GAPS) is a new approach to the indirect detection of dark matter. It relies on searching for primary antideuterons produced in the annihilation of dark matter in the galactic halo. Low energy antideuterons produced through Standard Model processes, such as collisions of cosmic-rays with interstellar baryons, are greatly suppressed compared to primary antideuterons. Thus a low energy antideuteron search provides a clean signature of dark matter. In GAPS antiparticles are slowed down and captured in target atoms. The resultant exotic atom deexcites with the emission of X-rays and annihilation pions, protons and other particles. A tracking geometry allows for the detection of the X-rays and particles, providing a unique signature to identify the mass of the antiparticle. A prototype detector was successfully tested at the KEK accelerator in 2005, and a prototype GAPS balloon flight is scheduled for 2011. This will be followed by a full scale experiment on a long duration balloon from Antarctica in 2014. We discuss the status and future plans for GAPS. 相似文献
140.
W. Menn O. Adriani G.C. Barbarino G.A. Bazilevskaya R. Bellotti M. Boezio E.A. Bogomolov L. Bonechi M. Bongi V. Bonvicini S. Borisov S. Bottai A. Bruno F. Cafagna D. Campana R. Carbone P. Carlson M. Casolino G. Castellini L. Consiglio M.P. De Pascale C. De Santis N. De Simone V. Di Felice A.M. Galper W. Gillard L. Grishantseva G. Jerse A.V. Karelin S.V. Koldashov S.Y. Krutkov A.N. Kvashnin A. Leonov V. Malakhov V. Malvezzi L. Marcelli A.G. Mayorov V.V. Mikhailov E. Mocchiutti A. Monaco N. Mori N. Nikonov G. Osteria F. Palma P. Papini M. Pearce P. Picozza C. Pizzolotto M. Ricci S.B. Ricciarini 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013