首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6023篇
  免费   17篇
  国内免费   35篇
航空   2779篇
航天技术   2229篇
综合类   26篇
航天   1041篇
  2021年   60篇
  2019年   50篇
  2018年   180篇
  2017年   104篇
  2016年   76篇
  2015年   29篇
  2014年   137篇
  2013年   188篇
  2012年   163篇
  2011年   250篇
  2010年   159篇
  2009年   269篇
  2008年   319篇
  2007年   181篇
  2006年   153篇
  2005年   190篇
  2004年   183篇
  2003年   201篇
  2002年   127篇
  2001年   192篇
  2000年   137篇
  1999年   145篇
  1998年   158篇
  1997年   127篇
  1996年   155篇
  1995年   197篇
  1994年   181篇
  1993年   95篇
  1992年   148篇
  1991年   51篇
  1990年   52篇
  1989年   128篇
  1988年   40篇
  1987年   42篇
  1986年   58篇
  1985年   179篇
  1984年   138篇
  1983年   106篇
  1982年   133篇
  1981年   168篇
  1980年   46篇
  1979年   30篇
  1978年   38篇
  1977年   36篇
  1976年   29篇
  1975年   27篇
  1974年   34篇
  1973年   25篇
  1970年   28篇
  1969年   26篇
排序方式: 共有6075条查询结果,搜索用时 375 毫秒
221.
The ultraviolet (UV) environment of Mars has been investigated to gain an understanding of the variation of exposure throughout a Martian year, and link this flux to biological effects and possible survival of organisms at the Martian surface. To gain an idea of how the solar UV radiation varies between different regions, including planned landing sites of two future Mars surface missions, we modelled the total solar UV surface flux throughout one Martian year for two different dust scenarios. To understand the degree of solar UV stress on micro-organisms and/or molecules essential for life on the surface of Mars, we also calculated the biologically effective dose (BED) for T7 and Uracil in relevant wavelength regions at the Martian surface as a function of season and latitude, and discuss the biological survival rates in the presence of Martian solar UV radiation. High T7/Uracil BED ratios indicate that even at high latitudes where the UV flux is significantly reduced, the radiation environment is still hostile for life due to the persisting UV-C component of the flux.  相似文献   
222.
The northward and southward orientation of the interplanetary magnetic field (IMF) is usually considered as providing the external boundary conditions in the solar wind interaction with the Earth's magnetopause but it is the magnetic field in the magnetosheath that interacts with the Earth's magnetic field. In this paper, we consider the possibility that the wave activity in the foreshock region may affect the magnetic field orientation in the magnetosheath with time scales that might be geomagnetically effective. If magnetosheath magnetic field becomes disturbed on plasma streamlines which are connected to the quasi-parallel bow shock and foreshock, the magnetic field orientation on the inner magnetosheath may differ significantly from the undisturbed IMF. We present a model of dayside reconnection which may occur when the IMF northward and illustrate its effects on the erosion of the magnetopause.  相似文献   
223.
We examined whether microgravity influences the induced-mutation frequencies through in vivo experiments during space flight aboard the space shuttle Discovery (STS-91). We prepared dried samples of repair-deficient strains and parental strains of Escherichia (E.) coli and Saccharomyces (S.) cerevisiae given DNA damage treatment. After culture in space, we measured the induced-mutation frequencies and SOS-responses under microgravity. The experimental findings indicate that almost the same induced-mutation frequencies and SOS-responses of space samples were observed in both strains compared with the ground control samples. It is suggested that microgravity might not influence induced-mutation frequencies and SOS-responses at the stages of DNA replication and/or DNA repair. In addition, we developed a new experimental apparatus for space experiments to culture and freeze stocks of E. coli and S. cerevisiae cells.  相似文献   
224.
To clarify the effects of gravity on heat/gas exchange between plant leaves and the ambient air, the leaf temperatures and net photosynthetic rates of plant leaves were evaluated at 0.01, 1.0, 1.5 and 2.0 G of 20 seconds each during a parabolic airplane flight. Thermal images of leaves were captured using infrared thermography at an air temperature of 26 degrees C, a relative humidity of 15% and an irradiance of 260 W m-2. The net photosynthetic rates were determined by using a chamber method with an infrared gas analyzer at an air temperature of 20 degrees C, a relative humidity of 50% and a photosynthetic photon flux of 0.5 mmol m-2 s-1. The mean leaf temperature increased by 1 degree C and the net photosynthetic rate decreased by 13% with decreasing gravity levels from 1.0 to 0.01 G. The leaf temperature decreased by 0.5 degree C and the net photosynthetic rate increased by 7% with increasing gravity levels from 1.0 to 2.0 G. Heat/gas exchanges between leaves and the ambient air were more retarded at lower gravity levels. A restricted free air convection under microgravity conditions in space would limit plant growth by retarding heat and gas exchanges between leaves and the ambient air.  相似文献   
225.
226.
227.
We describe the design and calibration of the Far-Infrared Photometer (FIRP), one of four focal plane instruments on the Infrared Telescope in Space (IRTS). The FIRP will provide absolute photometry in four bands centered at 150, 250, 400, and 700 μm with spectral resolution λ/Δλ ≈ 3 and spatial resolution ΔΘ = 0.5 degrees. High sensitivity is achieved by using bolometric detectors operated at 300 mK in an AC bridge circuit. The closed-cycle 3He refrigerator can be recycled in orbit. A 2 K shutter provides a zero reference for each field of view. More than 10% of the sky will be surveyed during the ≈3 week mission lifetime with a sensitivity of <10−13 W·cm−2·sr−1 per 0.5 degree pixel.  相似文献   
228.
229.
Changes of deoxyribonucleoprotein in the spleen, thymus and liver of rats exposed to wegithlessness or artifical gravity on board biosatellites Cosmos 782 and Cosmos 936 after 20 days of flight were investigated. The level of polydeoxyribonucleotides in the spleen and thymus of rats exposed during the flight to weightlessness increased 4 – 11 hours after landing, suggesting breakdown of a part of the deoxyribonucleoprotein present. The use of artifical gravity prevented this breakdown in the thymus but not in the spleen. The breakdown was accompanied in the majority of cases by a decrease in teh deoxyribonucleoprotein content. We believe the breakdown of deoxyribonucleoprotein is due to a nonspecific stress reaction to the change from the weightless state to that of terrestrial gravity during landing. The polydeoxyribonucleotide level and amount of deoxyribonucleoprotein in the majority of cases returned to normal values during the 25 days of readaptation. No substantial change of deoxyribonucleoprotein was found in the liver. The different findings in the three organs are due to the fact that breakdown of deoxyribonucleoprotein takes place in sensitive cells underlying pycnosis. These cells are found in the spleen and thymus, but not in the liver.  相似文献   
230.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号