全文获取类型
收费全文 | 3499篇 |
免费 | 22篇 |
国内免费 | 7篇 |
专业分类
航空 | 1782篇 |
航天技术 | 1201篇 |
综合类 | 12篇 |
航天 | 533篇 |
出版年
2021年 | 30篇 |
2019年 | 27篇 |
2018年 | 64篇 |
2017年 | 46篇 |
2016年 | 47篇 |
2015年 | 23篇 |
2014年 | 69篇 |
2013年 | 84篇 |
2012年 | 83篇 |
2011年 | 120篇 |
2010年 | 89篇 |
2009年 | 135篇 |
2008年 | 183篇 |
2007年 | 90篇 |
2006年 | 77篇 |
2005年 | 94篇 |
2004年 | 86篇 |
2003年 | 113篇 |
2002年 | 71篇 |
2001年 | 122篇 |
2000年 | 73篇 |
1999年 | 83篇 |
1998年 | 106篇 |
1997年 | 70篇 |
1996年 | 95篇 |
1995年 | 131篇 |
1994年 | 102篇 |
1993年 | 62篇 |
1992年 | 90篇 |
1991年 | 34篇 |
1990年 | 39篇 |
1989年 | 86篇 |
1988年 | 43篇 |
1987年 | 37篇 |
1986年 | 35篇 |
1985年 | 96篇 |
1984年 | 92篇 |
1983年 | 82篇 |
1982年 | 83篇 |
1981年 | 90篇 |
1980年 | 27篇 |
1979年 | 27篇 |
1978年 | 29篇 |
1977年 | 27篇 |
1976年 | 19篇 |
1975年 | 35篇 |
1974年 | 25篇 |
1973年 | 18篇 |
1972年 | 33篇 |
1971年 | 18篇 |
排序方式: 共有3528条查询结果,搜索用时 15 毫秒
81.
82.
E. E. Russell F. G. Brown R. A. Chandos W. C. Fincher L. F. Kubel A. A. Lacis L. D. Travis 《Space Science Reviews》1992,60(1-4):531-563
The Photopolarimeter/Radiometer (PPR) is a remote sensing instrument on the Galileo Orbiter designed to measure the degree of linear polarization and the intensity of reflected sunlight in ten spectral channels between 410 and 945 nm to determine the physical properties of Jovian clouds and aerosols, and to characterize the texture and microstructure of satellite surfaces. The PPR also measures thermal radiation in five spectral bands between 15 and 100 m to sense the upper tropospheric temperature structure. Two additional channels which measure spectrally integrated solar and solar plus thermal radiation are used to determine the planetary radiation budget components. The PPR photopolarimetric measurements utilize previously flown technology for high-precision polarimetry using a calcite Wollaston prism and two silicon photodiodes to enable simultaneous detection of the two orthogonal polarization components. The PPR radiometry measurements are made with a lithium tantalate pyroelectric detector utilizing a unique arrangement of radiometric stops and a scene/space chopper blade to enable a warm instrument to sense accurately the much colder scene temperatures. 相似文献
83.
The use of gray-scale intensities together with the edge information present in a forward-looking infrared (FLIR) image to obtain a precise and accurate segmentation of a target is presented. A model of FLIR images based on gray-scale and edge information is incorporated in a gradient relaxation technique which explicitly maximizes a criterion function based on the inconsistency and ambiguity of classification of pixels with respect to their neighbors. Four variations of the basic technique which provide automatic selection of thresholds to segment FLIR images are considered. These methods are compared, and several examples of segmentation of ship images are given 相似文献
84.
We present up-to-date evolutionary models of low-mass stars, from M0.6 M down to the hydrogen burning minimum mass, using recent equation of state and synthetic spectra calculations. Comparison is made with observed luminosity function for these objects. We also present implications for the dark-matter distribution in the galactic halo. 相似文献
85.
A recursive tracking algorithm is presented which uses the strength of target returns to improve track formation performance and track maintenance through target maneuvers in a cluttered environment. This technique combines the interacting multiple model (IMM) approach with a generalized probabilistic data association (PDA), which uses the measured return amplitude in conjunction with probabilistic models for the target and clutter returns. Key tracking decisions can be made automatically by assessing the probabilities of target models to provide rapid and accurate decisions for both true track acceptance and false track dismissal in track formation. It also provides the ability to accurately continue tracking through coordinated turn target maneuvers 相似文献
86.
SWE,a comprehensive plasma instrument for the WIND spacecraft 总被引:1,自引:0,他引:1
K. W. Ogilvie D. J. Chornay R. J. Fritzenreiter F. Hunsaker J. Keller J. Lobell G. Miller J. D. Scudder E. C. Sittler Jr. R. B. Torbert D. Bodet G. Needell A. J. Lazarus J. T. Steinberg J. H. Tappan A. Mavretic E. Gergin 《Space Science Reviews》1995,71(1-4):55-77
The Solar Wind Experiment (SWE) on the WIND spacecraft is a comprehensive, integrated set of sensors which is designed to investigate outstanding problems in solar wind physics. It consists of two Faraday cup (FC) sensors; a vector electron and ion spectrometer (VEIS); a strahl sensor, which is especially configured to study the electron strahl close to the magnetic field direction; and an on-board calibration system. The energy/charge range of the Faraday cups is 150 V to 8 kV, and that of the VEIS is 7 V to 24.8 kV. The time resolution depends on the operational mode used, but can be of the order of a few seconds for 3-D measurements. Key parameters which broadly characterize the solar wind positive ion velocity distribution function will be made available rapidly from the GGS Central Data Handling Facility. 相似文献
87.
The paper presents a technique of forming and evaluating the allowable clearance between a launch vehicle fairing and spacecraft. 相似文献
88.
Louise M. Prockter Rosaly M. C. Lopes Bernd Giese Ralf Jaumann Ralph D. Lorenz Robert T. Pappalardo Gerald W. Patterson Peter C. Thomas Elizabeth P. Turtle Roland J. Wagner 《Space Science Reviews》2010,153(1-4):63-111
The surfaces of the Solar System’s icy satellites show an extraordinary variety of morphological features, which bear witness to exchange processes between the surface and subsurface. In this paper we review the characteristics of surface features on the moons of Jupiter, Saturn, Uranus and Neptune. Using data from spacecraft missions, we discuss the detailed morphology, size, and topography of cryovolcanic, tectonic, aeolian, fluvial, and impact features of both large moons and smaller satellites. 相似文献
89.
S. M. Krimigis D. G. Mitchell D. C. Hamilton S. Livi J. Dandouras S. Jaskulek T. P. Armstrong J. D. Boldt A. F. Cheng G. Gloeckler J. R. Hayes K. C. Hsieh W.-H. Ip E. P. Keath E. Kirsch N. Krupp L. J. Lanzerotti R. Lundgren B. H. Mauk R. W. McEntire E. C. Roelof C. E. Schlemm B. E. Tossman B. Wilken D. J. Williams 《Space Science Reviews》2004,114(1-4):233-329
The magnetospheric imaging instrument (MIMI) is a neutral and charged particle detection system on the Cassini orbiter spacecraft designed to perform both global imaging and in-situ measurements to study the overall configuration and dynamics of Saturn’s magnetosphere and its interactions with the solar wind, Saturn’s atmosphere, Titan, and the icy satellites. The processes responsible for Saturn’s aurora will be investigated; a search will be performed for substorms at Saturn; and the origins of magnetospheric hot plasmas will be determined. Further, the Jovian magnetosphere and Io torus will be imaged during Jupiter flyby. The investigative approach is twofold. (1) Perform remote sensing of the magnetospheric energetic (E > 7 keV) ion plasmas by detecting and imaging charge-exchange neutrals, created when magnetospheric ions capture electrons from ambient neutral gas. Such escaping neutrals were detected by the Voyager l spacecraft outside Saturn’s magnetosphere and can be used like photons to form images of the emitting regions, as has been demonstrated at Earth. (2) Determine through in-situ measurements the 3-D particle distribution functions including ion composition and charge states (E > 3 keV/e). The combination of in-situ measurements with global images, together with analysis and interpretation techniques that include direct “forward modeling’’ and deconvolution by tomography, is expected to yield a global assessment of magnetospheric structure and dynamics, including (a) magnetospheric ring currents and hot plasma populations, (b) magnetic field distortions, (c) electric field configuration, (d) particle injection boundaries associated with magnetic storms and substorms, and (e) the connection of the magnetosphere to ionospheric altitudes. Titan and its torus will stand out in energetic neutral images throughout the Cassini orbit, and thus serve as a continuous remote probe of ion flux variations near 20R
S (e.g., magnetopause crossings and substorm plasma injections). The Titan exosphere and its cometary interaction with magnetospheric plasmas will be imaged in detail on each flyby. The three principal sensors of MIMI consists of an ion and neutral camera (INCA), a charge–energy–mass-spectrometer (CHEMS) essentially identical to our instrument flown on the ISTP/Geotail spacecraft, and the low energy magnetospheric measurements system (LEMMS), an advanced design of one of our sensors flown on the Galileo spacecraft. The INCA head is a large geometry factor (G ∼ 2.4 cm2 sr) foil time-of-flight (TOF) camera that separately registers the incident direction of either energetic neutral atoms (ENA) or ion species (≥5∘ full width half maximum) over the range 7 keV/nuc < E < 3 MeV/nuc. CHEMS uses electrostatic deflection, TOF, and energy measurement to determine ion energy, charge state, mass, and 3-D anisotropy in the range 3 ≤ E ≤ 220 keV/e with good (∼0.05 cm2 sr) sensitivity. LEMMS is a two-ended telescope that measures ions in the range 0.03 ≤ E ≤ 18 MeV and electrons 0.015 ≤ E≤ 0.884 MeV in the forward direction (G ∼ 0.02 cm2 sr), while high energy electrons (0.1–5 MeV) and ions (1.6–160 MeV) are measured from the back direction (G ∼ 0.4 cm2 sr). The latter are relevant to inner magnetosphere studies of diffusion processes and satellite microsignatures as well as cosmic ray albedo neutron decay (CRAND). Our analyses of Voyager energetic neutral particle and Lyman-α measurements show that INCA will provide statistically significant global magnetospheric images from a distance of ∼60 R
S every 2–3 h (every ∼10 min from ∼20 R
S). Moreover, during Titan flybys, INCA will provide images of the interaction of the Titan exosphere with the Saturn magnetosphere every 1.5 min. Time resolution for charged particle measurements can be < 0.1 s, which is more than adequate for microsignature studies. Data obtained during Venus-2 flyby and Earth swingby in June and August 1999, respectively, and Jupiter flyby in December 2000 to January 2001 show that the instrument is performing well, has made important and heretofore unobtainable measurements in interplanetary space at Jupiter, and will likely obtain high-quality data throughout each orbit of the Cassini mission at Saturn. Sample data from each of the three sensors during the August 18 Earth swingby are shown, including the first ENA image of part of the ring current obtained by an instrument specifically designed for this purpose. Similarily, measurements in cis-Jovian space include the first detailed charge state determination of Iogenic ions and several ENA images of that planet’s magnetosphere.This revised version was published online in July 2005 with a corrected cover date. 相似文献
90.
Alfvén waves are considered to be viable transporters of the non-thermal energy required to heat the Sun’s quiescent atmosphere. An abundance of recent observations, from state-of-the-art facilities, have reported the existence of Alfvén waves in a range of chromospheric and coronal structures. Here, we review the progress made in disentangling the characteristics of transverse kink and torsional linear magnetohydrodynamic (MHD) waves. We outline the simple, yet powerful theory describing their basic properties in (non-)uniform magnetic structures, which closely resemble the building blocks of the real solar atmosphere. 相似文献