首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3499篇
  免费   22篇
  国内免费   7篇
航空   1782篇
航天技术   1201篇
综合类   12篇
航天   533篇
  2021年   30篇
  2019年   27篇
  2018年   64篇
  2017年   46篇
  2016年   47篇
  2015年   23篇
  2014年   69篇
  2013年   84篇
  2012年   83篇
  2011年   120篇
  2010年   89篇
  2009年   135篇
  2008年   183篇
  2007年   90篇
  2006年   77篇
  2005年   94篇
  2004年   86篇
  2003年   113篇
  2002年   71篇
  2001年   122篇
  2000年   73篇
  1999年   83篇
  1998年   106篇
  1997年   70篇
  1996年   95篇
  1995年   131篇
  1994年   102篇
  1993年   62篇
  1992年   90篇
  1991年   34篇
  1990年   39篇
  1989年   86篇
  1988年   43篇
  1987年   37篇
  1986年   35篇
  1985年   96篇
  1984年   92篇
  1983年   82篇
  1982年   83篇
  1981年   90篇
  1980年   27篇
  1979年   27篇
  1978年   29篇
  1977年   27篇
  1976年   19篇
  1975年   35篇
  1974年   25篇
  1973年   18篇
  1972年   33篇
  1971年   18篇
排序方式: 共有3528条查询结果,搜索用时 15 毫秒
61.
The relationships of type Pi (broadband) pulsations to various other substorm-related phenomena are reviewed. Several of the more popular mechanisms for the origin of Pi activity are discussed in the light of the observations. There is only one mechanism in sight that tentatively accounts for observed characteristics of Pi 1–2 activity at auroral oval and polar cap latitudes and that is the three-dimensional current loop mechanism. If two or more mechanisms are involved in the generation of Pi noise, then it is possible that the garden-hose overstability and/or a drift Alfvén wave mechanism operating in the plasma sheet contribute to the observed pulsations.The common feature of all Pi 1–2 events is not the presence of temporal precipitation pulsations but the presence of an E-region, suggesting that enhanced conductivity and E-region currents are required. Pi activity appears to be closely related to unsteady convection in progress. Pi data promise to provide useful information on convection and field-aligned and ionospheric currents.  相似文献   
62.
A beamforming technique involving cross correlation of the outputs of two directional arrays is investigated. The performance characteristics of the crossarray system are determined and related to the characteristics of the two individual arrays. It is found that the crossarray beam pattern is the average (in decibels) of the beam patterns of the individual arrays, and that the crossarray gain (rejection of spatially distributed noise) is 1.5 dB greater than the average (in decibels) of the individual array gains. The most interesting applications for this system may be those where the two arrays are quite different, as in the case of a parametric acoustic receiving array (PARRAY) and a broadside line array.  相似文献   
63.
Plasmaspheric density structures have been studied since the discovery of the plasmasphere in the late 1950s. But the advent of the Cluster and Image missions in 2000 has added substantially to our knowledge of density structures, thanks to the new capabilities of those missions: global imaging with Image and four-point in situ measurements with Cluster. The study of plasma sources and losses has given new results on refilling rates and erosion processes. Two-dimensional density images of the plasmasphere have been obtained. The spatial gradient of plasmaspheric density has been computed. The ratios between H+, He+ and O+ have been deduced from different ion measurements. Plasmaspheric plumes have been studied in detail with new tools, which provide information on their morphology, dynamics and occurrence. Density structures at smaller scales have been revealed with those missions, structures that could not be clearly distinguished before the global images from Image and the four-point measurements by Cluster became available. New terms have been given to these structures, like “shoulders”, “channels”, “fingers” and “crenulations”. This paper reviews the most relevant new results about the plasmaspheric plasma obtained since the start of the Cluster and Image missions.  相似文献   
64.
Alfvén waves are considered to be viable transporters of the non-thermal energy required to heat the Sun’s quiescent atmosphere. An abundance of recent observations, from state-of-the-art facilities, have reported the existence of Alfvén waves in a range of chromospheric and coronal structures. Here, we review the progress made in disentangling the characteristics of transverse kink and torsional linear magnetohydrodynamic (MHD) waves. We outline the simple, yet powerful theory describing their basic properties in (non-)uniform magnetic structures, which closely resemble the building blocks of the real solar atmosphere.  相似文献   
65.
The Photopolarimeter/Radiometer (PPR) is a remote sensing instrument on the Galileo Orbiter designed to measure the degree of linear polarization and the intensity of reflected sunlight in ten spectral channels between 410 and 945 nm to determine the physical properties of Jovian clouds and aerosols, and to characterize the texture and microstructure of satellite surfaces. The PPR also measures thermal radiation in five spectral bands between 15 and 100 m to sense the upper tropospheric temperature structure. Two additional channels which measure spectrally integrated solar and solar plus thermal radiation are used to determine the planetary radiation budget components. The PPR photopolarimetric measurements utilize previously flown technology for high-precision polarimetry using a calcite Wollaston prism and two silicon photodiodes to enable simultaneous detection of the two orthogonal polarization components. The PPR radiometry measurements are made with a lithium tantalate pyroelectric detector utilizing a unique arrangement of radiometric stops and a scene/space chopper blade to enable a warm instrument to sense accurately the much colder scene temperatures.  相似文献   
66.
We present up-to-date evolutionary models of low-mass stars, from M0.6 M down to the hydrogen burning minimum mass, using recent equation of state and synthetic spectra calculations. Comparison is made with observed luminosity function for these objects. We also present implications for the dark-matter distribution in the galactic halo.  相似文献   
67.
SWE,a comprehensive plasma instrument for the WIND spacecraft   总被引:1,自引:0,他引:1  
The Solar Wind Experiment (SWE) on the WIND spacecraft is a comprehensive, integrated set of sensors which is designed to investigate outstanding problems in solar wind physics. It consists of two Faraday cup (FC) sensors; a vector electron and ion spectrometer (VEIS); a strahl sensor, which is especially configured to study the electron strahl close to the magnetic field direction; and an on-board calibration system. The energy/charge range of the Faraday cups is 150 V to 8 kV, and that of the VEIS is 7 V to 24.8 kV. The time resolution depends on the operational mode used, but can be of the order of a few seconds for 3-D measurements. Key parameters which broadly characterize the solar wind positive ion velocity distribution function will be made available rapidly from the GGS Central Data Handling Facility.  相似文献   
68.
Interacting multiple model tracking with target amplitude feature   总被引:5,自引:0,他引:5  
A recursive tracking algorithm is presented which uses the strength of target returns to improve track formation performance and track maintenance through target maneuvers in a cluttered environment. This technique combines the interacting multiple model (IMM) approach with a generalized probabilistic data association (PDA), which uses the measured return amplitude in conjunction with probabilistic models for the target and clutter returns. Key tracking decisions can be made automatically by assessing the probabilities of target models to provide rapid and accurate decisions for both true track acceptance and false track dismissal in track formation. It also provides the ability to accurately continue tracking through coordinated turn target maneuvers  相似文献   
69.
Klumpar  D.M.  Möbius  E.  Kistler  L.M.  Popecki  M.  Hertzberg  E.  Crocker  K.  Granoff  M.  Tang  Li  Carlson  C.W.  McFadden  J.  Klecker  B.  Eberl  F.  Künneth  E.  Kästle  H.  Ertl  M.  Peterson  W.K.  Shelly  E.G.  Hovestadt  D. 《Space Science Reviews》2001,98(1-2):197-219
The Time-of-flight Energy Angle Mass Spectrograph (TEAMS) is being flown on the FAST Small Explorer mission to measure the 3-dimensional distribution function of the major ion species present in the lower magnetosphere. The instrument is similar to time-of-flight plasma analyzer systems that have been designed and planned for flight as CODIF (COmposition and DIstribution Function analyzer) on the four European Space Agency Cluster-II spacecraft and, as ESIC (Equator-S Ion Composition instrument) on Equator-S. This instrument allows the 3-dimensional distribution functions of individual ion species to be determined within spin period (2.5 s). Two-dimensional distributions are measured in 80 ms. These capabilities are crucial for the study of selective energization processes in the auroral regions of the magnetosphere. The design, operational characteristics, and test and calibration results for this instrument are presented. The sensor consists of a toroidal top-hat electrostatic analyzer with instantaneous acceptance of ions over 360° in polar angle. After post-acceleration of the incoming ions by up to 25 kV, a time-of-flight mass spectrograph discriminates the individual species. It has been demonstrated through calibration that the instrument can easily separate H+, He2+, He+, O+ and, for energies after post-acceleration of > 20 keV, even O2 + molecules. On-board mass discrimination and the internal accumulation of several distinct data quantities combined with the spacecraft's flexible telemetry formatting allow for instrument data rates from 7.8 kb s–1 to 315 kb s–1 to be telemetered to ground through the FAST centralized Instrument Data Processor.  相似文献   
70.
Hawkins  S.E.  Roelof  E.C.  Decker  R.B.  Ho  G.C.  Lario  D. 《Space Science Reviews》2001,97(1-4):269-272
We have performed a joint survey of anisotropic ≳40 keV electron events from August 1997 to September 2000 using the matched detectors on the Ulysses (ULS)/HI-SCALE and the ACE/EPAM instruments. A computer algorithm selected events with strong, statistically significant pitch-angle anisotropies. Electron pitch-angle distributions at ACE (∼1 AU) are often ‘beams’ that are strongly collimated along the local interplanetary magnetic field (IMF). These flare-associated impulsive injections can display rapid rise times (∼15 min) and slower decays, or more irregular intensity histories. At ULS, the electron intensities are lower and the time histories smoother, but strong anisotropies are still observable, indicating direct, nearly field-aligned propagation outward from the Sun. We focus on four event periods, selected from the survey, during times when the angle between the footpoints of the IMF lines intersecting ACE and ULS is small. These events span three full years and cover a wide range of distances and heliographic latitudes. We found one reasonably good association between impulsive electron events at ACE and ULS, and two events with small field-aligned gradients. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号