全文获取类型
收费全文 | 9425篇 |
免费 | 28篇 |
国内免费 | 25篇 |
专业分类
航空 | 4654篇 |
航天技术 | 3120篇 |
综合类 | 201篇 |
航天 | 1503篇 |
出版年
2021年 | 73篇 |
2019年 | 58篇 |
2018年 | 145篇 |
2017年 | 94篇 |
2016年 | 91篇 |
2014年 | 166篇 |
2013年 | 211篇 |
2012年 | 214篇 |
2011年 | 328篇 |
2010年 | 228篇 |
2009年 | 355篇 |
2008年 | 412篇 |
2007年 | 234篇 |
2006年 | 189篇 |
2005年 | 237篇 |
2004年 | 238篇 |
2003年 | 280篇 |
2002年 | 279篇 |
2001年 | 358篇 |
2000年 | 178篇 |
1999年 | 224篇 |
1998年 | 275篇 |
1997年 | 194篇 |
1996年 | 238篇 |
1995年 | 292篇 |
1994年 | 292篇 |
1993年 | 169篇 |
1992年 | 217篇 |
1991年 | 107篇 |
1990年 | 111篇 |
1989年 | 222篇 |
1988年 | 108篇 |
1987年 | 99篇 |
1986年 | 99篇 |
1985年 | 298篇 |
1984年 | 248篇 |
1983年 | 225篇 |
1982年 | 214篇 |
1981年 | 296篇 |
1980年 | 101篇 |
1979年 | 90篇 |
1978年 | 92篇 |
1977年 | 75篇 |
1976年 | 74篇 |
1975年 | 97篇 |
1974年 | 81篇 |
1973年 | 63篇 |
1972年 | 103篇 |
1971年 | 76篇 |
1969年 | 61篇 |
排序方式: 共有9478条查询结果,搜索用时 15 毫秒
441.
Cosmic radiation has been measured by a variety of techniques since 1933. This paper presents the evolution of data acquisition, processing, and availability of cosmic radiation data from the early years to the present time. Information on the worldwide network of neutron monitor stations and the availability of these cosmic radiation records is included. This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
442.
Green J.L. Benson R.F. Fung S.F. Taylor W.W.L. Boardsen S.A. Reinisch B.W. Haines D.M. Bibl K. Cheney G. Galkin I.A. Huang X. Myers S.H. Sales G.S. Bougeret J.-L. Manning R. Meyer-Vernet N. Moncuquet M. Carpenter D.L. Gallagher D.L. Reiff P.H. 《Space Science Reviews》2000,91(1-2):361-389
The Radio Plasma Imager (RPI) will be the first-of-its kind instrument designed to use radio wave sounding techniques to perform repetitive remote sensing measurements of electron number density (N
e) structures and the dynamics of the magnetosphere and plasmasphere. RPI will fly on the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) mission to be launched early in the year 2000. The design of the RPI is based on recent advances in radio transmitter and receiver design and modern digital processing techniques perfected for ground-based ionospheric sounding over the last two decades. Free-space electromagnetic waves transmitted by the RPI located in the low-density magnetospheric cavity will be reflected at distant plasma cutoffs. The location and characteristics of the plasma at those remote reflection points can then be derived from measurements of the echo amplitude, phase, delay time, frequency, polarization, Doppler shift, and echo direction. The 500 m tip-to-tip X and Y (spin plane) antennas and 20 m Z axis antenna on RPI will be used to measures echoes coming from distances of several R
E. RPI will operate at frequencies between 3 kHz to 3 MHz and will provide quantitative N
e values from 10–1 to 105 cm–3. Ray tracing calculations, combined with specific radio imager instrument characteristics, enables simulations of RPI measurements. These simulations have been performed throughout an IMAGE orbit and under different model magnetospheric conditions. They dramatically show that radio sounding can be used quite successfully to measure a wealth of magnetospheric phenomena such as magnetopause boundary motions and plasmapause dynamics. The radio imaging technique will provide a truly exciting opportunity to study global magnetospheric dynamics in a way that was never before possible. 相似文献
443.
Plasmaspheric Density Structures and Dynamics: Properties Observed by the CLUSTER and IMAGE Missions 总被引:1,自引:0,他引:1
Fabien Darrouzet Dennis L. Gallagher Nicolas André Donald L. Carpenter Iannis Dandouras Pierrette M. E. Décréau Johan De Keyser Richard E. Denton John C. Foster Jerry Goldstein Mark B. Moldwin Bodo W. Reinisch Bill R. Sandel Jiannan Tu 《Space Science Reviews》2009,145(1-2):55-106
Plasmaspheric density structures have been studied since the discovery of the plasmasphere in the late 1950s. But the advent of the Cluster and Image missions in 2000 has added substantially to our knowledge of density structures, thanks to the new capabilities of those missions: global imaging with Image and four-point in situ measurements with Cluster. The study of plasma sources and losses has given new results on refilling rates and erosion processes. Two-dimensional density images of the plasmasphere have been obtained. The spatial gradient of plasmaspheric density has been computed. The ratios between H+, He+ and O+ have been deduced from different ion measurements. Plasmaspheric plumes have been studied in detail with new tools, which provide information on their morphology, dynamics and occurrence. Density structures at smaller scales have been revealed with those missions, structures that could not be clearly distinguished before the global images from Image and the four-point measurements by Cluster became available. New terms have been given to these structures, like “shoulders”, “channels”, “fingers” and “crenulations”. This paper reviews the most relevant new results about the plasmaspheric plasma obtained since the start of the Cluster and Image missions. 相似文献
444.
Structure of a two-phase flow of boiling water at low-head adiabatic efflux through the laval nozzle
The critical flow conditions and structural forms of a two-phase flow that is formed during water efflux from the region of moderate and low pressures into a rarefied medium are analyzed. The difference in the structural forms of a flow realized at the low-head efflux from the structure of a flow occurring in the fluid flow with moderate and high initial pressures is established. The critical pressure differential characterizing the establishment of the maximum flowrate is determined and the decisive influence of turbulence on the vapor phase generation and flow conditions of a two-phase medium is shown. 相似文献
445.
D. Koschny V. Dhiri K. Wirth J. Zender R. Solaz R. Hoofs R. Laureijs T.-M Ho B. Davidsson G. Schwehm 《Space Science Reviews》2007,128(1-4):167-188
ESA’s Rosetta mission was launched in March 2004 and is on its way to comet 67P/Churyumov-Gerasimenko, where it is scheduled
to arrive in summer 2014. It comprises a payload of 12 scientific instruments and a Lander. All instruments are provided by
Principal Investigators, which are responsible for their operations.
As for most ESA science missions, the ground segment of the mission consists of a Mission Operations Centre (MOC) and a Science
Operations Centre (SOC). While the MOC is responsible for all spacecraft-related aspects and the final uplink of all command
timelines to the spacecraft, the scientific operations of the instruments and the collection of the data and ingestion into
the Planetary Science Archive are coordinated by the SOC. This paper focuses on the tasks of the SOC and in particular on
the methodology and constraints to convert the scientific goals of the Rosetta mission to operational timelines. 相似文献
446.
J. Wicht M. Mandea F. Takahashi U. R. Christensen M. Matsushima B. Langlais 《Space Science Reviews》2007,132(2-4):261-290
Mariner 10 measurements proved the existence of a large-scale internal magnetic field on Mercury. The observed field amplitude,
however, is too weak to be compatible with typical convective planetary dynamos. The Lorentz force based on an extrapolation
of Mariner 10 data to the dynamo region is 10−4 times smaller than the Coriolis force. This is at odds with the idea that planetary dynamos are thought to work in the so-called
magnetostrophic regime, where Coriolis force and Lorentz force should be of comparable magnitude. Recent convective dynamo
simulations reviewed here seem to resolve this caveat. We show that the available convective power indeed suffices to drive
a magnetostrophic dynamo even when the heat flow though Mercury’s core–mantle boundary is subadiabatic, as suggested by thermal
evolution models. Two possible causes are analyzed that could explain why the observations do not reflect a stronger internal
field. First, toroidal magnetic fields can be strong but are confined to the conductive core, and second, the observations
do not resolve potentially strong small-scale contributions. We review different dynamo simulations that promote either or
both effects by (1) strongly driving convection, (2) assuming a particularly small inner core, or (3) assuming a very large
inner core. These models still fall somewhat short of explaining the low amplitude of Mariner 10 observations, but the incorporation
of an additional effect helps to reach this goal: The subadiabatic heat flow through Mercury’s core–mantle boundary may cause
the outer part of the core to be stably stratified, which would largely exclude convective motions in this region. The magnetic
field, which is small scale, strong, and very time dependent in the lower convective part of the core, must diffuse through
the stagnant layer. Here, the electromagnetic skin effect filters out the more rapidly varying high-order contributions and
mainly leaves behind the weaker and slower varying dipole and quadrupole components (Christensen in Nature 444:1056–1058,
2006). Messenger and BepiColombo data will allow us to discriminate between the various models in terms of the magnetic fields
spatial structure, its degree of axisymmetry, and its secular variation. 相似文献
447.
We describe a numerical integral-projection method used by the authors for the approximate solution of systems of interrelated two-dimensional linear boundary-value problems in mechanics of composite shell systems. The method is based on discretization in each shell substructure of a two-dimensional problem along one of coordinates using a projection-grid variant of the Galerkin-Petrov method and its subsequent transformation to a system of ordinary differential equations; by integration and introduction of sought functions as unknown derivatives, the system is reduced to a system of integral equations being solved by the method of mechanical quadratures. The method is characterized by the fact that its application requires no additional conditions of conformity with discretization parameters of substructures being mated. 相似文献
448.
As Viking Landers did not measure rock compositions, Pathfinder (PF) data are the first in this respect. This review gives no proof yet whether the PF rocks are igneous or sedimentary, but for petrogenetic reasons they could be igneous. We suggest a model in which Mars is covered by about 50% basaltic and 50% andesitic igneous rocks. The soils are a mixture of the two with addition of Mg-sulfate and -chloride plus iron compounds possibly derived from the hematite deposits. 相似文献
449.
Klumpar D.M. Möbius E. Kistler L.M. Popecki M. Hertzberg E. Crocker K. Granoff M. Tang Li Carlson C.W. McFadden J. Klecker B. Eberl F. Künneth E. Kästle H. Ertl M. Peterson W.K. Shelly E.G. Hovestadt D. 《Space Science Reviews》2001,98(1-2):197-219
The Time-of-flight Energy Angle Mass Spectrograph (TEAMS) is being flown on the FAST Small Explorer mission to measure the 3-dimensional distribution function of the major ion species present in the lower magnetosphere. The instrument is similar to time-of-flight plasma analyzer systems that have been designed and planned for flight as CODIF (COmposition and DIstribution Function analyzer) on the four European Space Agency Cluster-II spacecraft and, as ESIC (Equator-S Ion Composition instrument) on Equator-S. This instrument allows the 3-dimensional distribution functions of individual ion species to be determined within
spin period (2.5 s). Two-dimensional distributions are measured in 80 ms. These capabilities are crucial for the study of selective energization processes in the auroral regions of the magnetosphere. The design, operational characteristics, and test and calibration results for this instrument are presented. The sensor consists of a toroidal top-hat electrostatic analyzer with instantaneous acceptance of ions over 360° in polar angle. After post-acceleration of the incoming ions by up to 25 kV, a time-of-flight mass spectrograph discriminates the individual species. It has been demonstrated through calibration that the instrument can easily separate H+, He2+, He+, O+ and, for energies after post-acceleration of > 20 keV, even O2
+ molecules. On-board mass discrimination and the internal accumulation of several distinct data quantities combined with the spacecraft's flexible telemetry formatting allow for instrument data rates from 7.8 kb s–1 to 315 kb s–1 to be telemetered to ground through the FAST centralized Instrument Data Processor. 相似文献
450.
The simple tilted dipole picture of Corotating Interaction Regions which prevailed during the first polar pass of Ulysses no longer applies since the Sun entered a more active phase. Recent observations show that CIRs still persist, though the
large polar coronal holes of solar minimum shrink to smaller areas and move to lower latitudes. We present 3-D simulations
for the cosmic-ray intensity variations in a model with non-polar high speed streams. Latitudinal and recurrent time-variations
are discussed, but more detailed and realistic simulations are required before quantitative comparisons with observations
can be made.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献