首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19255篇
  免费   57篇
  国内免费   125篇
航空   10277篇
航天技术   5723篇
综合类   246篇
航天   3191篇
  2021年   159篇
  2018年   272篇
  2017年   154篇
  2016年   181篇
  2014年   436篇
  2013年   514篇
  2012年   444篇
  2011年   661篇
  2010年   483篇
  2009年   835篇
  2008年   861篇
  2007年   442篇
  2006年   438篇
  2005年   430篇
  2004年   473篇
  2003年   570篇
  2002年   500篇
  2001年   628篇
  2000年   376篇
  1999年   474篇
  1998年   472篇
  1997年   339篇
  1996年   428篇
  1995年   489篇
  1994年   488篇
  1993年   367篇
  1992年   364篇
  1991年   250篇
  1990年   242篇
  1989年   431篇
  1988年   211篇
  1987年   243篇
  1986年   244篇
  1985年   641篇
  1984年   524篇
  1983年   416篇
  1982年   491篇
  1981年   622篇
  1980年   246篇
  1979年   191篇
  1978年   189篇
  1977年   146篇
  1976年   156篇
  1975年   193篇
  1974年   181篇
  1973年   161篇
  1972年   188篇
  1971年   148篇
  1970年   143篇
  1969年   147篇
排序方式: 共有10000条查询结果,搜索用时 234 毫秒
411.
We show, using the HST — GHRS data on velocity and temperature in the nearby interstellar medium, that the observed 3 – 4 km s–1 relative velocity between the Local Interstellar Cloud (LIC) and the so-called G-cloud located in the Galactic Center hemisphere can be quite naturally explained assuming that the two clouds do interact with each other. In the proposed interpretation the two media are separated by a (quasiperpendicular) MHD shock front propagating from the LIC into the G-cloud. The LIC plasma is then nothing else but the shocked (compression 1.3 – 1.4) gas of the G-cloud. A 1-D single-fluid solution of the Rankine — Hugoniot equations can fit the most probable observed values of the relative velocity (3.75 km/s), LIC (6700 K) and G-cloud (5400 K) kinetic temperatures, if the plasma-beta of the LIC plasma is in the range 1.3 – 1.5 (Table 1). This corresponds to a super — fast magnetosonic motion of the heliosphere through the LIC, independently of LIC density. The LIC magnetic field strength is 1.9 (3.1) G for the LIC electron density ne = 0.04 (0.10) cm–3. In this case the shock is less than 30 000 AU away and moves at about 10 km s–1 relative to the LIC plasma. The Sun is chasing the shock and should catch up with it in about 104 years. If the heliospheric VLP emissions cutoff at 1.8 kHz is indicative of ne (LIC) = 0.04 cm–3 (Gurnett et al., 1993), the (pure plasma) bowshock ahead of the heliopause could be the source of quasi-continuous heliospheric 2-kHz emission band. We believe that with the expected increase in the performance of modern spectroscopic instrumentation the proposed method of magnetic field evaluation may in the future find wider application in the studies of the interstellar medium.  相似文献   
412.
Beyond the magnetic influence of the Earth, the flux of galactic cosmic radiation (GCR) represents a radiological concern for long-term manned space missions. Current concepts of radiation quality and equivalent dose are inadequate for accurately specifying the relative biological "efficiency" of low doses of such heavily ionising radiations, based as they are on the single parameter of Linear Energy Transfer (LET). Such methods take no account of the mechanisms, nor of the highly inhomogeneous spatial structure, of energy deposition in radiation tracks. DNA damage in the cell nucleus, which ultimately leads to the death or transformation of the cell, is usually initiated by electrons liberated from surrounding molecules by the incident projectile ion. The characteristics of these emitted "delta-rays", dependent primarily upon the charge and velocity of the ion, are considered in relation to an idealised representation of the cellular environment. Theoretically calculated delta-ray energy spectra are multiplied by a series of weighting algorithms designed to represent the potential for DNA insult in this environment, both in terms of the quantity and quality of damage. By evaluating the resulting curves, and taking into account the energy spectra of heavy ions in space, a relative measure of the biological relevance of the most abundant GCR species is obtained, behind several shielding configurations. It is hoped that this method of assessing the radiation quality of galactic cosmic rays will be of value when considering the safety of long-term manned space missions.  相似文献   
413.
The Spacelab-Mir-1 (SLM-1) mission is the first docking of the Space Shuttle Atlantis (STS-71) with the Orbital Station Mir in June 1995. The SLM-1 "Greenhouse-2" experiment will utilize the Russian-Bulgarian-developed plant growth unit (Svet). "Greenhouse-2" will include two plantings (1) designed to test the capability of Svet to grow a crop of Superdwarf wheat from seed to seed, and (2) to provide green plant material for post-flight analysis. Protocols, procedures, and equipment for the experiment have been developed by the US-Russian science team. "Greenhouse-2" will also provide the first orbital test of a new Svet Instrumentation System (SIS) developed by Utah State University to provide near real time data on plant environmental parameters and gas-exchange rates. SIS supplements the Svet control and monitoring system with additional sensors for substrate moisture, air temperature, IR leaf temperature, light, oxygen, pressure, humidity, and carbon-dioxide. SIS provides the capability to monitor canopy transpiration and net assimilation of the plants growing in each vegetation unit (root zone) by enclosing the canopy in separate, retractable, ventilated leaf chambers. Six times during the seed-to-seed experiment, plant samples will be collected, leaf area measured, and plant parts fixed and/or dried for ground analysis. A second planting initiated 30 days before the arrival of a U.S. Shuttle [originally planned to be STS-71] is designed to provide green material at the vegetative development stage for ground analysis. [As this paper is being edited, the experiment has been delayed until after the arrival of STS-71.]  相似文献   
414.
A wide variety of observations on cells in space, admittedly made under constraining and unnatural conditions in many cases, have led to experimental results that were surprising or unexpected. Reproducibility, freedom from artifacts, and plausibility must be considered in all cases, even when results are not surprising. The papers in the symposium on "Theories and Models on the Biology of Cells in Space" are dedicated to the subject of the plausibility of cellular responses to gravity--inertial accelerations between 0 and 9.8 m/s2 and higher. The mechanical phenomena inside the cell, the gravitactic locomotion of single eukaryotic and prokaryotic cells, and the effects of inertial unloading on cellular physiology are addressed in theoretical and experimental studies.  相似文献   
415.
In the area of Solar System Exploration most of recently proposed mission oriented to the studies of Mars. Except MARS-96 and possibly MARS SAMPLE RETURN missions other Mars missions use Molnija class launchers. All Russian missions heavily involve international partners.  相似文献   
416.
The Suess-Urey (S-U) mission has been proposed as a NASA Discovery mission to return samples of matter from the Sun to the Earth for isotopic and chemical analyses in terrestrial laboratories to provide a major improvement in our knowledge of the average chemical and isotopic composition of the solar system. The S-U spacecraft and sample return capsule will be placed in a halo orbit around the L1 Sun-Earth libration point for two years to collect solar wind ions which implant into large passive collectors made of ultra-pure materials. Constant Spacecraft-Sun-Earth geometries enable simple spin stabilized attitude control, simple passive thermal control, and a fixed medium gain antenna. Low data requirements and the safety of a Sun-pointed spinner, result in extremely low mission operations costs.  相似文献   
417.
The theory of electron cyclotron maser emission and its application to solar spike bursts are reviewed. By analogy with the Earth's AKR, three sources of free energy are considered: a loss-cone anisotropy, a velocity-space hole, and a trapped distribution. The problem of how the radiation escapes through the second harmonic absorption layer is emphasized. Harmonic emission due to z mode coalescence may operate for some bursts, but the 2–5s delay between hard X-ray bursts and spike bursts suggests that some other mechanisms is required for most spike bursts. A model involving formation of a trapped distribution in low-density regions neighboring the flaring flux tube is considered.  相似文献   
418.
The heating of solar coronal loops by the resonant absorption or phase-mixing of incident wave energy is investigated in the framework of 3D nonlinear magnetohydrodynamics (MHD) by means of numerical simulations.  相似文献   
419.
The power spectrum was calculated for the time series of the LDE-type flare occurrence during the last three solar cycles (the 20-th, the 21-st and the first part of the 22-nd cycle). LDE-type flares (Long Duration Events in SXR) are associated with the interplanetary protons (SEP and STIP as well), energized coronal arches and radio type IV emission. Generally, in all the cycles considered, LDE-type flares mainly originated during a 6-year interval of the respective cycle (2 years before and 4 years after the sunspot cycle maximum). The following significant periodicities were found: in the 20-th cycle: 1.4, 2.1, 2.9, 4.0, 10.7 and 54.2 of month; in the 21-st cycle: 1.2, 1.6, 2.8, 4.9, 7.8 and 44.5 of month; in the 22-nd cycle, till March 1992: 1.4, 1.8, 2.4, 7.2, 8.7, 11.8 and 29.1 of month; in all interval (1969-1992): 1. the longer periodicities: 232.1, 121.1 (the dominant at 10.1 of year), 80.7, 61.9 and 25.6 of month, 2. the shorter periodicities: 4.7, 5.0, 6.8, 7.9, 9.1, 15.8 and 20.4 of month. Solar variability has an extremely complex time dependence. The Sun is a multiperiodic system. The strong periodicities "near 155 and 270 days" were found also in the LDE-type flare occurrence.  相似文献   
420.
Spectral emission lines created in the solar chromosphere — corona transition region show net red-shifts. It has been proposed that this may be the result of the return of spicular material. We simulate a spicule numerically using the rebound shock model and find that the resulting hydrodynamic evolution leads to a perceived up-flow in transition region spectral lines even though the average velocity in the line forming region is directed downward. The explanation for this apparent paradox is found in the correlation between density and velocity in the waves generated by the rebound shock spicule.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号