首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4477篇
  免费   22篇
  国内免费   7篇
航空   2357篇
航天技术   1220篇
综合类   12篇
航天   917篇
  2021年   30篇
  2019年   27篇
  2018年   179篇
  2017年   154篇
  2016年   77篇
  2015年   45篇
  2014年   69篇
  2013年   88篇
  2012年   119篇
  2011年   238篇
  2010年   206篇
  2009年   255篇
  2008年   272篇
  2007年   216篇
  2006年   78篇
  2005年   142篇
  2004年   96篇
  2003年   114篇
  2002年   70篇
  2001年   125篇
  2000年   74篇
  1999年   83篇
  1998年   106篇
  1997年   72篇
  1996年   96篇
  1995年   131篇
  1994年   106篇
  1993年   67篇
  1992年   93篇
  1991年   34篇
  1990年   39篇
  1989年   89篇
  1988年   43篇
  1987年   37篇
  1986年   35篇
  1985年   96篇
  1984年   92篇
  1983年   82篇
  1982年   84篇
  1981年   91篇
  1980年   28篇
  1979年   27篇
  1978年   29篇
  1977年   27篇
  1976年   19篇
  1975年   35篇
  1974年   25篇
  1973年   18篇
  1972年   33篇
  1971年   20篇
排序方式: 共有4506条查询结果,搜索用时 15 毫秒
901.
This article broadly reviews our knowledge of solar flares. There is a particular focus on their global properties, as opposed to the microphysics such as that needed for magnetic reconnection or particle acceleration as such. Indeed solar flares will always remain in the domain of remote sensing, so we cannot observe the microscales directly and must understand the basic physics entirely via the global properties plus theoretical inference. The global observables include the general energetics—radiation in flares and mass loss in coronal mass ejections (CMEs)—and the formation of different kinds of ejection and global wave disturbance: the type II radio-burst exciter, the Moreton wave, the EIT “wave”, and the “sunquake” acoustic waves in the solar interior. Flare radiation and CME kinetic energy can have comparable magnitudes, of order 1032 erg each for an X-class event, with the bulk of the radiant energy in the visible-UV continuum. We argue that the impulsive phase of the flare dominates the energetics of all of these manifestations, and also point out that energy and momentum in this phase largely reside in the electromagnetic field, not in the observable plasma.  相似文献   
902.
Dynamics of a satellite-stabilizer system is studied. It is supposed that there is a viscous friction in a hinge connecting two bodies, but there is no elasticity. The attitude motion in a plane of circular orbit is considered, and parameters are determined, at which natural oscillations near a stable equilibrium position in the orbital coordinate system are damped out most rapidly. The rate of transient processes is estimated by a value of the degree of stability of linearized equations of motion. The optimization of the degree of stability is sequentially performed in dimensionless damping coefficient (the first stage) and in inertial system parameters (the second stage). The result of the first stage is the partition of system parameter space into the regions, in each of which the maximum of the degree of stability is reached on a particular configuration of roots of the characteristic equation. It is shown at the second stage that the global maximum is reached at two points of parameter space, where one of system bodies degenerates into a plate, and the characteristic equation has four equal real roots.  相似文献   
903.
The isotopic composition and concentrations of helium are investigated in 9 samples taken from different depths of a soil column delivered by the Luna-24 mission. It is demonstrated that, with allowance made for random errors, the isotopic composition of helium remains invariable. The concentrations of helium are subject to considerable variations, the increases and decreases relative to the average value reaching a factor of 1.5–2. Assuming that the full length of the soil column was formed due to long-term accumulation of lunar clastic rocks (regolith), based on measurements of cosmogenic isotopes, a method of determining the rate of regolith accumulation has been developed, as well as a method of determining the age of the column soil samples. It is found that the rate of regolith accumulation is variable, and it changes over the column length within the limits (0.2–0.8 cm)/106 years. The range of the time for formation of the investigated part of the column is 100–600 million years. The observed decreases of concentration (at 250 and 600 million years) can be associated with both solar and lunar processes. In particular, a possibility of diffusion losses of helium due to the mechanism of jump-like diffusion is discussed, and diffusion parameters are found. A comparison of time periods of the observed variations in the solar wind with paleontological epochs and periods is made.  相似文献   
904.
905.
The objective of the Nephelometer Experient aboard the Probe of the Galileo mission is to explore the vertical structure and microphysical properties of the clouds and hazes in the atmosphere of Jupiter along the descent trajectory of the Probe (nominally from 0.1 to > 10 bars). The measurements, to be obtained at least every kilometer of the Probe descent, will provide the bases for inferences of mean particle sizes, particle number densities (and hence, opacities, mass densities, and columnar mass loading) and, for non-highly absorbing particles, for distinguishing between solid and liquid particles. These quantities, especially the location of the cloud bases, together with other quantities derived from this and other experiments aboard the Probe, will not only yield strong evidence for the composition of the particles, but, using thermochemical models, for species abundances as well. The measurements in the upper troposphere will provide ground truth data for correlation with remote sensing instruments aboard the Galileo Orbiter vehicle. The instrument is carefully designed and calibrated to measure the light scattering properties of the particulate clouds and hazes at scattering angles of 5.8°, 16°, 40°, 70°, and 178°. The measurement sensitivity and accuracy is such that useful estimates of mean particle radii in the range from about 0.2 to 20 can be inferred. The instrument will detect the presence of typical cloud particles with radii of about 1.0 , or larger, at concentrations of less than 1 cm3.Deceased.  相似文献   
906.
Interaction of shocks with a current sheet is investigated within a 2D MHD model based on an improved FCT numerical scheme. Basic parameters of the problem are chosen to correspond to situations in the solar corona with low plasma β and moderate shock strength. Slow and fast MHD shocks are introduced with shock normal parallel to magnetic field lines. The interaction with the current sheet causes distortion of the shock front and this distorts the magnetic field lines and generates electric current. Large current densities are generated especially when the fast MHD shock becomes the intermediate MHD shock at the current sheet. Then peak values of the current density are about 3–4 times larger than the initial undisturbed values in the current sheet.  相似文献   
907.
The Genesis mission returned samples of solar wind to Earth in September 2004 for ground-based analyses of solar-wind composition, particularly for isotope ratios. Substrates, consisting mostly of high-purity semiconductor materials, were exposed to the solar wind at L1 from December 2001 to April 2004. In addition to a bulk sample of the solar wind, separate samples of coronal hole (CH), interstream (IS), and coronal mass ejection material were obtained. Although many substrates were broken upon landing due to the failure to deploy the parachute, a number of results have been obtained, and most of the primary science objectives will likely be met. These objectives include He, Ne, Ar, Kr, and Xe isotope ratios in the bulk solar wind and in different solar-wind regimes, and 15N/14N and 18O/17O/16O to high precision. The greatest successes to date have been with the noble gases. Light noble gases from bulk solar wind and separate solar-wind regime samples have now been analyzed. Helium results show clear evidence of isotopic fractionation between CH and IS samples, consistent with simplistic Coulomb drag theory predictions of fractionation between the photosphere and different solar-wind regimes, though fractionation by wave heating is also a possible explanation. Neon results from closed system stepped etching of bulk metallic glass have revealed the nature of isotopic fractionation as a function of depth, which in lunar samples have for years deceptively suggested the presence of an additional, energetic component in solar wind trapped in lunar grains and meteorites. Isotope ratios of the heavy noble gases, nitrogen, and oxygen are in the process of being measured.  相似文献   
908.
An empirical model of the high-latitude boundary of the outer Earth’s radiation belt (ERB) has been presented, which is based on the measurement data of electron fluxes on the polar low-orbit CORONAS-Photon, Meteor-M1, and Meteor-M2 satellites. The boundary was determined by a sharp decrease to the background level of the flux of trapped electrons with energies of 100 or 200 keV in the polar part of the profile of the outer radiation belt. A numerical algorithm has been implemented to determine the time moment, when the fastest flux changes are recorded. The primary search was carried out, first, on 30 s averaged data, then repeated on data with a higher resolution. A functional dependence was obtained in order to approximate the obtained set of intersections of the boundary by elliptical curve. The empirical model constructed using the CORONAS-Photon measurement data in the epoch of anomalously low geomagnetic activity reflects the longitude structure of the high-latitude boundary of the outer radiation belt associated with the internal Earth’s magnetic field (MF), as well as its dependence on the universal time. Based on the data of intersections of the high-latitude boundary of the outer ERB (OERB) in the epoch of 2014–2016, the latitudinal shift of the boundary to the equator dependent on geomagnetic activity has been determined, as well as the nightside shift of the boundary due to the diurnal rotation of the Earth.  相似文献   
909.
A weak but statistically reliable dependence of the diurnal activity of oscillations in the ionospheric Alfvén resonator on orientation of the interplanetary magnetic field ahead of the magnetospheric front has been detected based on observations of ULF oscillations at Sayan solar observatory Mondy of the Institute of Solar–Terrestrial Physics. The interpretation of the result has been proposed. The essence is that the electromagnetic fluctuations penetrate into the magnetosphere from the interplanetary environment and influence the ionospheric resonator. The formulation of the problem and the method of solving it are part of the broad program of the experimental and theoretical study of the influence of the interplanetary magnetic field on the oscillation regime of ULF oscillations of the magnetosphere.  相似文献   
910.
During the conceptual design of a re-entry vehicle, the vehicle shape and geometry can be varied and its impact on performance can be evaluated. In this study, the shape optimization of two classes of vehicles has been studied: a capsule and a winged vehicle. Their aerodynamic characteristics were analyzed using local-inclination methods, automatically selected per vehicle segment. Entry trajectories down to Mach 3 were calculated assuming trimmed conditions. For the winged vehicle, which has both a body flap and elevons, a guidance algorithm to track a reference heat-rate was used. Multi-objective particle swarm optimization was used to optimize the shape using objectives related to mass, volume and range. The optimizations show a large variation in vehicle performance over the explored parameter space. Areas of very strong non-linearity are observed in the direct neighborhood of the two-dimensional Pareto fronts. This indicates the need for robust exploration of the influence of vehicle shapes on system performance during engineering trade-offs, which are performed during conceptual design. A number of important aspects of the influence of vehicle behavior on the Pareto fronts are observed and discussed. There is a nearly complete convergence to narrow-wing solutions for the winged vehicle. Also, it is found that imposing pitch-stability for the winged vehicle at all angles of attack results in vehicle shapes which require upward control surface deflections during the majority of the entry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号