全文获取类型
收费全文 | 8987篇 |
免费 | 35篇 |
国内免费 | 25篇 |
专业分类
航空 | 4256篇 |
航天技术 | 3051篇 |
综合类 | 31篇 |
航天 | 1709篇 |
出版年
2021年 | 88篇 |
2019年 | 60篇 |
2018年 | 231篇 |
2017年 | 146篇 |
2016年 | 129篇 |
2015年 | 64篇 |
2014年 | 213篇 |
2013年 | 257篇 |
2012年 | 253篇 |
2011年 | 379篇 |
2010年 | 279篇 |
2009年 | 402篇 |
2008年 | 453篇 |
2007年 | 268篇 |
2006年 | 199篇 |
2005年 | 237篇 |
2004年 | 229篇 |
2003年 | 278篇 |
2002年 | 188篇 |
2001年 | 304篇 |
2000年 | 172篇 |
1999年 | 211篇 |
1998年 | 246篇 |
1997年 | 151篇 |
1996年 | 229篇 |
1995年 | 274篇 |
1994年 | 260篇 |
1993年 | 152篇 |
1992年 | 210篇 |
1991年 | 75篇 |
1990年 | 79篇 |
1989年 | 195篇 |
1988年 | 86篇 |
1987年 | 77篇 |
1986年 | 89篇 |
1985年 | 246篇 |
1984年 | 196篇 |
1983年 | 164篇 |
1982年 | 176篇 |
1981年 | 263篇 |
1980年 | 71篇 |
1979年 | 64篇 |
1978年 | 69篇 |
1977年 | 60篇 |
1975年 | 80篇 |
1974年 | 58篇 |
1973年 | 46篇 |
1972年 | 61篇 |
1971年 | 51篇 |
1970年 | 50篇 |
排序方式: 共有9047条查询结果,搜索用时 15 毫秒
271.
S.A. Demin Y.A. Nefedyev A.O. Andreev N.Y. Demina S.F. Timashev 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(2):639-644
The analysis of turbulent processes in sunspots and pores which are self-organizing long-lived magnetic structures is a complicated and not yet solved problem. The present work focuses on studying such magneto-hydrodynamic (MHD) formations on the basis of flicker-noise spectroscopy using a new method of multi-parametric analysis. The non-stationarity and cross-correlation effects taking place in solar activity dynamics are considered. The calculated maximum values of non-stationarity factor may become precursors of significant restructuring in solar magnetic activity. The introduced cross-correlation functions enable us to judge synchronization effects between the signals of various solar activity indicators registered simultaneously. 相似文献
272.
Valentin A. Shuvalov Dmitry N. Lazuchenkov Nikolai B. Gorev Galina S. Kochubei 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(1):355-366
Using a cylindrical Langmuir probe and the authors’ proprietary two-channel pressure transducer, ionospheric plasma parameter distributions along the orbit of the Sich-2 satellite (Ukraine, 2011–2012) were measured. This paper is concerned with identifying the space–time location of ionospheric plasma disturbance sources, including the epicenters of actual earthquakes (before or during the satellite flyover) and incipient earthquakes on the subsatellite track, from the measured distributions of the electron density and temperature and the neutral particle temperature along the satellite orbit. To do this, the measured ionospheric plasma parameter distributions are connected to the coordinates on the subsatellite track.It is shown that local disturbances in the electron density and temperature and neutral particle temperature distributions in the satellite orbit in the ionosphere may serve as indicators of seismic activity on the subsatellite track. The epicenters of incipient earthquakes may be set off from other plasma parameter disturbance sources associated with seismic activity using information provided by special monitoring and survey centers that monitor the current seismic situation. 相似文献
273.
John A. Arredondo 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(1):111-121
In this paper we find the families of relative equilibria for the three body problem in the plane, when the interaction between the bodies is given by a quasi-homogeneous potential. The number of the relative equilibria depends on the values of the masses and on the size of the system, measured by the moment of inertia. 相似文献
274.
K.A. Berényi V. Barta Á. Kis 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(5):1230-1243
In our study we analyze and compare the response and behavior of the ionospheric F2 and of the sporadic E-layer during three strong (i.e., Dst?<??100nT) individual geomagnetic storms from years 2012, 2013 and 2015, winter time period. The data was provided by the state-of the art digital ionosonde of the Széchenyi István Geophysical Observatory located at midlatitude, Nagycenk, Hungary (IAGA code: NCK, geomagnetic latitude: 46.17° geomagnetic longitude: 98.85°). The local time of the sudden commencement (SC) was used to characterize the type of the ionospheric storm (after Mendillo and Narvaez, 2010). This way two regular positive phase (RPP) ionospheric storms and one no-positive phase (NPP) storm have been analyzed. In all three cases a significant increase in electron density of the foF2 layer can be observed at dawn/early morning (around 6:00 UT, 07:00 LT). Also we can observe the fade-out of the ionospheric layers at night during the geomagnetically disturbed time periods. Our results suggest that the fade-out effect is not connected to the occurrence of the sporadic E-layers. 相似文献
275.
Alireza A. Ardalan Iraj Jazireeyan Naser Abdi Mohammad-Hadi Rezvani 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(6):1537-1545
Performance of SARAL/AltiKa mission has been evaluated within 2016 altimeter calibration/validation framework in Persian Gulf through three campaigns conducted in the offshore waters of Sajafi, Imam Hassan and Kangan Ports, while the altimeter overflew the passes 470, 111 and 25 on 13 Feb, 7 March and 17 June 2016, respectively. As the preparation, a lightweight buoy was equipped with a GNSS receiver/choke-ring antenna and a MEMS-based IMU to measure independent datasets in the field operations. To obtain accurate sea surface height (SSH) time series, the offset of the onboard antenna from the equilibrium sea level was predetermined through surveying operations as the buoy was deploying in the onshore waters of Kangan Port. Accordingly, the double-difference carrier phase observations have been processed via the Bernese GPS Software v. 5.0 so as to provide the GNSS-derived time series at the comparison points of the calibration campaigns, once the disturbing effects due to the platform tilt and heave have been eliminated. Owing to comparing of the SSH time series and the associating altimetry 1?Hz GDR-T datasets, the calibration/validation of the SARAL/AltiKa has been performed in the both cases of radiometer and ECMWF wet troposphere corrections so as to identify potential land contamination. An agreement of the present findings in comparison with those attained in other international calibrations sites confirms the promising feasibility of Persian Gulf as a new dedicated site for calibration/validation of ongoing and future altimetry missions. 相似文献
276.
Minakshi Devi S. Patgiri A.K. Barbara Koh-Ichiro Oyama K. Ryu V. Depuev A. Depueva 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(6):1444-1455
The earthquake (EQ) time coupling processes between equator-low-mid latitude ionosphere are complex due to inherent dynamical status of each latitudinal zone and qualified geomagnetic roles working in the system. In an attempt to identify such process, the paper presents temporal and latitudinal variations of ionization density (foF2) covering 45°N to 35°S, during a number of earthquake events (M?>?5.5). The approaches adopted for extraction of features by the earthquake induced preparatory processes are discussed in the paper through identification of parameters like the ‘EQ time modification in density gradient’ defined by δ?=?(foF2 max???foF2 min)∕τmm, where τmm – time span (in days) between EQ modified density maximum and minimum, and the Earthquake time Equatorial Anomaly, i.e. EEA, one of the most significant phenomenon which develops even during night time irrespective of epicenter position. Based on the observations, the paper presents the seismic time coupling dynamics through anomaly like manifestations between equator, low and mid latitude ionosphere bringing in the global Total Electron Content (TEC) features as supporting indices. 相似文献
277.
M. Pietrella A. Pignalberi M. Pezzopane A. Pignatelli A. Azzarone R. Rizzi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(10):2569-2584
Three-dimensional (3-D) electron density matrices, computed in the Mediterranean area by the IRI climatological model and IRIEup and ISP nowcasting models, during some intense and severe geomagnetic-ionospheric storms, were ingested by the ray tracing software tool IONORT, to synthesize quasi-vertical ionograms. IRIEup model was run in different operational modes: (1) assimilating validated autoscaled electron density profiles only from a limited area which, in our case, is the Mediterranean sector (IRIEup_re(V) mode); (2) assimilating electron density profiles from a larger region including several stations spread across Europe: (a) without taking care of validating the autoscaled data in the assimilation process (IRIEup(NV)); (b) validating carefully the autoscaled electron density profiles before their assimilation (IRIEup(V)).The comparative analysis was carried out comparing IRI, IRIEup_re(V), ISP, IRIEup(NV), and IRIEup(V) foF2 synthesized values, with corresponding foF2 measurements autoscaled by ARTIST, and then validated, at the truth sites of Roquetes (40.80°N, 0.50°E, Spain), San Vito (40.60°N, 17.80°E, Italy), Athens (38.00°N, 23.50°E, Greece), and Nicosia, (35.03°N, 33.16°E, Cyprus). The outcomes demonstrate that: (1) IRIEup_re(V), performs better than ISP in the western Mediterranean (around Roquetes); (2) ISP performs slightly better than IRIEup_re(V) in the central part of Mediterranean (around Athens and San Vito); (3) ISP performance is better than the IRIEup_re(V) one in the eastern Mediterranean (around Nicosia); (4) IRIEup(NV) performance is worse than the IRIEup(V) one; (5) in the central Mediterranean area, IRIEup(V) performance is better than the IRIEup_re(V) one, and it is practically the same for the western and eastern sectors.Concerning the overall performance, nowcasting models proved to be considerably more reliable than the climatological IRI model to represent the ionosphere behaviour during geomagnetic-ionospheric storm conditions; ISP and IRIEup(V) provided the best performance, but neither of them has clearly prevailed over the other one. 相似文献
278.
Mingying Huo Giovanni Mengali Alessandro A. Quarta 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(10):2617-2627
Propellantless continuous-thrust propulsion systems, such as electric solar wind sails, may be successfully used for new space missions, especially those requiring high-energy orbit transfers. When the mass-to-thrust ratio is sufficiently large, the spacecraft trajectory is characterized by long flight times with a number of revolutions around the Sun. The corresponding mission analysis, especially when addressed within an optimal context, requires a significant amount of simulation effort. Analytical trajectories are therefore useful aids in a preliminary phase of mission design, even though exact solution are very difficult to obtain. The aim of this paper is to present an accurate, analytical, approximation of the spacecraft trajectory generated by an electric solar wind sail with a constant pitch angle, using the latest mathematical model of the thrust vector. Assuming a heliocentric circular parking orbit and a two-dimensional scenario, the simulation results show that the proposed equations are able to accurately describe the actual spacecraft trajectory for a long time interval when the propulsive acceleration magnitude is sufficiently small. 相似文献
279.
280.
Correlation of IRTAM and FPMU data confirming the application of IRTAM to support ISS Program safety
William A. Hartman William D. Schmidl Ronald Mikatarian Ivan Galkin 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2019,63(6):1838-1844
A “Real-Time” plasma hazard assessment process was developed to support International Space Station (ISS) Program real-time decision-making providing solar array constraint relief information for Extravehicular Activities (EVAs) planning and operations. This process incorporates real-time ionospheric conditions, ISS solar arrays’ orientation, ISS flight attitude, and where the EVA will be performed on the ISS. This assessment requires real-time data that is presently provided by the Floating Potential Measurement Unit (FPMU) which measures the ISS floating potential (FP), along with ionospheric electron number density (Ne) and electron temperature (Te), in order to determine the present ISS environment. Once the present environment conditions are correlated with International Reference Ionosphere (IRI) values, IRI is used to forecast what the environment could become in the event of a severe geomagnetic storm. If the FPMU should fail, the Space Environments team needs another source of data which is utilized to support a short-term forecast for EVAs. The IRI Real-Time Assimilative Mapping (IRTAM) model is an ionospheric model that uses real-time measurements from a large network of digisondes to produce foF2 and hmF2 global maps in 15?min cadence. The Boeing Space Environments team has used the IRI coefficients produced in IRTAM to calculate the Ne along the ISS orbital track. The results of the IRTAM model have been compared to FPMU measurements and show excellent agreement. IRTAM has been identified as the FPMU back-up system that will be used to support the ISS Program if the FPMU should fail. 相似文献