首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7781篇
  免费   30篇
  国内免费   33篇
航空   4013篇
航天技术   2699篇
综合类   34篇
航天   1098篇
  2021年   52篇
  2019年   55篇
  2018年   102篇
  2017年   66篇
  2016年   59篇
  2014年   149篇
  2013年   186篇
  2012年   170篇
  2011年   251篇
  2010年   175篇
  2009年   271篇
  2008年   350篇
  2007年   197篇
  2006年   189篇
  2005年   193篇
  2004年   182篇
  2003年   252篇
  2002年   147篇
  2001年   262篇
  2000年   157篇
  1999年   195篇
  1998年   238篇
  1997年   160篇
  1996年   216篇
  1995年   278篇
  1994年   253篇
  1993年   154篇
  1992年   187篇
  1991年   102篇
  1990年   99篇
  1989年   199篇
  1988年   90篇
  1987年   89篇
  1986年   90篇
  1985年   256篇
  1984年   209篇
  1983年   181篇
  1982年   194篇
  1981年   233篇
  1980年   82篇
  1979年   62篇
  1978年   69篇
  1977年   70篇
  1976年   51篇
  1975年   91篇
  1974年   55篇
  1973年   54篇
  1972年   75篇
  1971年   56篇
  1970年   54篇
排序方式: 共有7844条查询结果,搜索用时 109 毫秒
141.
The data of measuring the plasma density in the topside ionosphere for the South-Atlantic geomagnetic anomaly region are presented. It is shown that irregular plasma structures with a wide spectrum of irregularity scale (including large-scale structures with a dimension of order of some hundred kilometers) can be generated in the fields of electrostatic turbulence in inhomogeneous plasma.  相似文献   
142.
Earth's subsurface offers one of the best possible sites to search for microbial life and the characteristic lithologies that life leaves behind. The subterrain may be equally valuable for astrobiology. Where surface conditions are particularly hostile, like on Mars, the subsurface may offer the only habitat for extant lifeforms and access to recognizable biosignatures. We have identified numerous unequivocally biogenic macroscopic, microscopic, and chemical/geochemical cave biosignatures. However, to be especially useful for astrobiology, we are looking for suites of characteristics. Ideally, "biosignature suites" should be both macroscopically and microscopically detectable, independently verifiable by nonmorphological means, and as independent as possible of specific details of life chemistries--demanding (and sometimes conflicting) criteria. Working in fragile, legally protected environments, we developed noninvasive and minimal impact techniques for life and biosignature detection/characterization analogous to Planetary Protection Protocols. Our difficult field conditions have shared limitations common to extraterrestrial robotic and human missions. Thus, the cave/subsurface astrobiology model addresses the most important goals from both scientific and operational points of view. We present details of cave biosignature suites involving manganese and iron oxides, calcite, and sulfur minerals. Suites include morphological fossils, mineral-coated filaments, living microbial mats and preserved biofabrics, 13C and 34S values consistent with microbial metabolism, genetic data, unusual elemental abundances and ratios, and crystallographic mineral forms.  相似文献   
143.
The purpose of “Vitamin” experiment is to study the efficiency of protective substances on three biological acellular systems aqueous solutions exposed to cosmic radiation in space. The first system “LDL”is a low density lipoprotein. The second is “E2-TeBG complexe” in which estradiol (E2) is bound to its plasmatic carrier protein, testosterone-estradiol binding globulin (TeBG). The third is “pBR 322”, a plasmid. “Vitamin” experiment was accomodated in the Biopan which had been mounted on the outer surface of a Foton retrievable satellite. The experiment was exposed to space environment during 15 days. A stable temperature of about 20 °C was maintained throughout the flight. “Vitamin” experiment preliminary results are presented and discussed.  相似文献   
144.
Kumar KV  Waligora JM 《Acta Astronautica》1995,36(8-12):589-593
Doppler ultrasound is frequently used for monitoring circulating microbubbles during decompression to assess the symptoms of Decompression Sickness (DCS). This analysis was carried out to evaluate its effectiveness for screening symptoms of DCS during simulated extravehicular activities (EVA). The information from various hypobaric chamber studies carried out at the NASA Johnson Space Center, Houston, TX was used in this analysis (n = 516). The circulating microbubbles were detected in the precordial area in 42% (218/516), and symptoms were reported in 16% (81/516) of these exposures. The accuracy of Doppler-detectable bubbles (Spencer grades) on all symptoms of DCS was examined by calculating measures of sensitivity and specificity. The efficacy of Doppler as a screening device was examined by calculating their positive predictive value (PPV) and negative predictive value (NPV). The results of these analyses indicated that the sensitivity of Doppler decreased, and the PPV increased with higher Spencer grades. However, the likelihood of detecting true negative cases (NPV) was consistently higher with all bubble grades. Due to the high false-positive rate and low prior probabilities of the risk of DCS, Doppler was found to be more useful to identify those who did not develop DCS, than to detect positive cases of DCS in the simulated EVA exposures.  相似文献   
145.
During 1986-1990 seven prime spacecrews (16 cosmonauts) have flown on-board the Mir orbital complex. The longest space mission duration was 366 days The principal objectives of the medical tasks were the maintenance of good health and performance of the spacecrews and conducting medical research programs which included study of the cardiovascular, motor, endocrine, blood, immune, and metabolic systems. Results obtained point to the ability of humans to readily adapt to a year-long stay in space and maintain good health and performance. Readaptation had a similar course as after other previous long-term space flights of up to 8 months in duration. Primary body system changes were not qualitatively different from findings after flights aboard the Salyut 6 and 7 space stations. In this case, during and after an 11-12 month flight, body system alterations were even less severe which was a result of adequate countermeasure use, their systematic and creative employment and maintenance of required environments to support life and work in space.  相似文献   
146.
Computer graphics is being employed at the NASA Johnson Space Center as a tool to perform rapid, efficient and economical analyses for man-machine integration, flight operations development and systems engineering. The Operator Station Design System (OSDS), a computer-based facility featuring a highly flexible and versatile interactive software package, PLAID, is described. This unique evaluation tool, with its expanding data base of Space Shuttle elements, various payloads, experiments, crew equipment and man models, supports a multitude of technical evaluations, including spacecraft and workstation layout, definition of astronaut visual access, flight techniques development, cargo integration and crew training. As OSDS is being applied to the Space Shuttle, Orbiter payloads (including the European Space Agency's Spacelab) and future space vehicles and stations, astronaut and systems safety are being enhanced. Typical OSDS examples are presented. By performing physical and operational evaluations during early conceptual phases. supporting systems verification for flight readiness, and applying its capabilities to real-time mission support, the OSDS provides the wherewithal to satisfy a growing need of the current and future space programs for efficient, economical analyses.  相似文献   
147.
We consider a relationship between the difference in spectral indices of the spectra of single hadrons and all hadrons (snglh) and the difference in the indices of the spectra of galactic cosmic ray (GCR) protons and nuclei. It is demonstrated that at the mountain level the ratio (pZ)/(snglh) is always larger than unity, if (snglh) > 0.1. From the experimental value snglh = 0.4 ± 0.05 we derive that, in the vicinity of E = 10 TeV, pZ 0.49 ± 0.06 , i.e., p 3.09 ± 0.06.__________Translated from Kosmicheskie Issledovaniya, Vol. 43, No. 2, 2005, pp. 83–87.Original Russian Text Copyright © 2005 by Grigorov, Tolstaya.  相似文献   
148.
Two bed rest analog studies of space flight were performed; one 14 d and the other 28 d in duration. Exercise response was studied in detail during the 28 d study and following both the 14 d and 28 d studies. This paper relates the results of these studies to physiologic changes noted during and following space flight. The most consistent change noted after both bed rest and space flight is an elevated heart rate during exercise. A second consistent finding is a postflight or postbed rest reduction in cardiac stroke volume. Cardiac output changes were variable. The inability to simulate inflight activity levels and personal exercise makes a direct comparison between bed rest and the results from specific space flights difficult.  相似文献   
149.
Prediction that the various stresses of flight, particularly weightlessness, would bring about significant derangements in the metabolism of the musculoskeletal system has been based on various observations of long-term immobilized or inactive bed rest. The only attempt at controlled measurement of metabolic changes in space prior to Skylab, a study during the 14-day Gemini VII flight, revealed rather modest losses of important elements. The three astronauts of Skylab II consumed a planned day-by-day, quite constant, dietary intake of major metabolic elements in mixed foods and beverages and provided virtually complete collections of excreta for 31 days preflight, during the 28 days inflight, and for 17 days postflight. Analyses showed that, in varying degree among the crewmen, urinary calcium increased gradually during flight in a pattern similar to that observed in bed-rest studies: the mean plateau peak of urinary calcium excretion in the latter part of flight was double preflight levels. Fecal calcium excretion did not change significantly, but calcium balance, owing to the urinary calcium rise, became either negative or less positive than in preflight measurement. Increased excretion and negative balance of nitrogen and phosphorus indicated appreciable loss of muscle tissue in all three crewmen. Significant losses also occurred inflight in potassium, sodium, and magnesium. Based on the similarity in pattern and degree between these observations and those in bed rest of the losses in calcium, phosphorus, and nitrogen, musculoskeletal integrity would not be threatened in space flights of up to at least 3 months. However, if similar changes occur, indicative of continuing losses of these elements, in the planned Skylab flights for considerably more than 28 days, concern for capable musculoskeletal function should be serious for flights of very many months' duration, and greater research attention will need to be given to development of protective counter-measures.  相似文献   
150.
In the past, one of the major problems in performing scientific investigations in space has been the high cost of developing, integrating, and transporting scientific experiments into space. The limited resources of unmanned spacecraft, coupled with the requirements for completely automated operations, was another factor contributing to the high costs of scientific research in space. In previous space missions after developing, integrating and transporting costly experiments into space and obtaining successful data, the experiment facility and spacecraft have been lost forever, because they could not be returned to earth. The objective of this paper is to present how the utilization of the Spacelab System will result in cost benefits to the scientific community, and significantly reduce the cost of space operations from previous space programs.The following approach was used to quantify the cost benefits of using the Spacelab System to greatly reduce the operational costs of scientific research in space. An analysis was made of the series of activities required to combine individual scientific experiments into an integrated payload that is compatible with the Space Transportation System (STS). These activities, including Shuttle and Spacelab integration, communications and data processing, launch support requirements, and flight operations were analyzed to indicate how this new space system, when compared with previous space systems, will reduce the cost of space research. It will be shown that utilization of the Spacelab modular design, standard payload interfaces, optional Mission Dependent Equipment (MDE), and standard services, such as the Experiment Computer Operating System (ECOS), allow the user many more services than previous programs, at significantly lower costs. In addition, the missions will also be analyzed to relate their cost benefit contributions to space scientific research.The analytical tools that are being developed at MSFC in the form of computer programs that can rapidly analyze experiment to Spacelab interfaces will be discussed to show how these tools allow the Spacelab integrator to economically establish the payload compatibility of a Spacelab mission.The information used in this paper has been assimilated from the actual experience gained in integrating over 50 highly complex, scientific experiments that will fly on the Spacelab first and second missions. In addition, this paper described the work being done at the Marshall Space Flight Center (MSFC) to define the analytical integration tools and techniques required to economically and efficiently integrate a wide variety of Spacelab payloads and missions. The conclusions reached in this study are based on the actual experience gained at MSFC in its roles of Spacelab integration and mission managers for the first three Spacelab missions. The results of this paper will clearly show that the cost benefits of the Spacelab system will greatly reduce the costs and increase the opportunities for scientific investigation from space.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号