首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5560篇
  免费   24篇
  国内免费   24篇
航空   2782篇
航天技术   2020篇
综合类   22篇
航天   784篇
  2021年   41篇
  2019年   41篇
  2018年   79篇
  2017年   57篇
  2016年   52篇
  2014年   104篇
  2013年   124篇
  2012年   120篇
  2011年   177篇
  2010年   130篇
  2009年   215篇
  2008年   288篇
  2007年   129篇
  2006年   122篇
  2005年   145篇
  2004年   143篇
  2003年   175篇
  2002年   108篇
  2001年   187篇
  2000年   112篇
  1999年   141篇
  1998年   169篇
  1997年   106篇
  1996年   148篇
  1995年   184篇
  1994年   168篇
  1993年   102篇
  1992年   137篇
  1991年   63篇
  1990年   64篇
  1989年   143篇
  1988年   64篇
  1987年   61篇
  1986年   59篇
  1985年   185篇
  1984年   149篇
  1983年   123篇
  1982年   130篇
  1981年   180篇
  1980年   60篇
  1979年   48篇
  1978年   49篇
  1977年   50篇
  1976年   34篇
  1975年   62篇
  1974年   41篇
  1973年   39篇
  1972年   46篇
  1970年   35篇
  1969年   37篇
排序方式: 共有5608条查询结果,搜索用时 468 毫秒
991.
The rates of the most important ionization processes acting in interplanetary space on interstellar H, He, C, O, Ne and Ar atoms are critically reviewed in the paper. Their long-term modulations in the period 1974 – 1994 are reexamined using updated information on relevant cross-sections as well as direct or indirect data on variations of the solar wind/solar EUV fluxes based on IMP 8 measurements and monitoring of the solar 10.7 cm radio emission. It is shown that solar cycle related variations are pronounced (factor of 3 between maximum and minimum) especially for species such as He, Ne, C for which photoionization is the dominant loss process. Species sensitive primarily to the charge-exchange (as H) show only moderate fluctuations 20% around average. It is also demonstrated that new techniques that make use of simultaneous observations of neutral He atoms on direct and indirect orbits, or simultaneous measurements of He+ and He++ pickup ions and solar wind particles can be useful tools for narrowing the uncertainties of the He photoionization rate caused by insufficient knowledge of the solar EUV flux and its variations.  相似文献   
992.
As part of the Cluster Wave Experiment Consortium (WEC), the Wide-Band (WBD) Plasma Wave investigation is designed to provide high-resolution measurements of both electric and magnetic fields in selected frequency bands from 25 Hz to 577 kHz. Continuous waveforms are digitised and transmitted in either a 220 kbit s-1 real-time mode or a 73 kbit s-1 recorded mode. The real-time data are received directly by a NASA Deep-Space Network (DSN) receiving station, and the recorded data are stored in the spacecraft solid-state recorder for later playback. In both cases the waveforms are Fourier transformed on the ground to provide high-resolution frequency-time spectrograms. The WBD measurements complement those of the other WEC instruments and also provide a unique new capability for performing very-long-baseline interferometry (VLBI) measurements.  相似文献   
993.
The Near-Infrared Spectrometer (NIS) instrument on the Near-Earth Asteroid Rendezvous (NEAR) spacecraft is designed to map spectral properties of the mission target, the S-type asteroid 433 Eros, at near-infrared wavelengths diagnostic of the composition of minerals forming S asteroids. NIS is a grating spectrometer, in which light is directed by a dichroic beam-splitter onto a 32-element Ge detector (center wavelengths, 816–1486 nm) and a 32-element InGaAs detector (center wavelengths, 1371–2708 nm). Each detector reports a 32-channel spectrum at 12-bit quantization. The field-of-view is selectable using slits with dimensions calibrated at 0.37° × 0.76° (narrow slit) and 0.74° × 0.76° (wide slit). A shutter can be closed for dark current measurements. For the Ge detector, there is an option to command a 10x boost in gain. A scan mirror rotates the field-of-view over a 140° range, and a diffuse gold radiance calibration target is viewable at the sunward edge of the field of regard. Spectra are measured once per second, and up to 16 can be summed onboard. Hyperspectral image cubes are built up by a combination of down-track spacecraft motion and cross-track scanning of the mirror. Instrument software allows execution of data acquisition macros, which include selection of the slit width, number of spectra to sum, gain, mirror scanning, and an option to interleave dark spectra with the shutter closed among asteroid observations. The instrument was extensively characterized by on-ground calibration, and a comprehensive program of in-flight calibration was begun shortly after launch. NIS observations of Eros will largely be coordinated with multicolor imaging from the Multispectral Imager (MSI). NIS will begin observing Eros during approach to the asteroid, and the instrument will map Eros at successively higher spatial resolutions as NEAR's orbit around Eros is lowered incrementally to 25 km altitude. Ultimate products of the investigation will include composition maps of the entire illuminated surface of Eros at spatial resolutions as high as 300 m.  相似文献   
994.
Effects of polarization and resolution on SAR ATR   总被引:3,自引:0,他引:3  
Lincoln Laboratory is investigating the detection and classification of stationary ground targets using high resolution, fully polarimetric, synthetic aperture radar (SAR) imagery. A study is summarized in which data collected by the Lincoln Laboratory 33 GHz SAR were used to perform a comprehensive comparison of automatic target recognition (ATR) performance for several polarization/resolution combinations. The Lincoln Laboratory baseline ATR algorithm suite was used, and was optimized for each polarization/resolution case. Both the HH polarization alone and the optimal combination of HH, HV, and VV were evaluated; the resolutions evaluated were 1 ft/spl times/1 ft and 1 m/spl times/1 m. The data set used for this study contained approximately 74 km/sup 2/ of clutter (56 km/sup 2/ of mixed clutter plus 18 km/sup 2/ of highly cultural clutter) and 136 tactical target images (divided equally between tanks and howitzers).  相似文献   
995.
The objective of the Nephelometer Experient aboard the Probe of the Galileo mission is to explore the vertical structure and microphysical properties of the clouds and hazes in the atmosphere of Jupiter along the descent trajectory of the Probe (nominally from 0.1 to > 10 bars). The measurements, to be obtained at least every kilometer of the Probe descent, will provide the bases for inferences of mean particle sizes, particle number densities (and hence, opacities, mass densities, and columnar mass loading) and, for non-highly absorbing particles, for distinguishing between solid and liquid particles. These quantities, especially the location of the cloud bases, together with other quantities derived from this and other experiments aboard the Probe, will not only yield strong evidence for the composition of the particles, but, using thermochemical models, for species abundances as well. The measurements in the upper troposphere will provide ground truth data for correlation with remote sensing instruments aboard the Galileo Orbiter vehicle. The instrument is carefully designed and calibrated to measure the light scattering properties of the particulate clouds and hazes at scattering angles of 5.8°, 16°, 40°, 70°, and 178°. The measurement sensitivity and accuracy is such that useful estimates of mean particle radii in the range from about 0.2 to 20 can be inferred. The instrument will detect the presence of typical cloud particles with radii of about 1.0 , or larger, at concentrations of less than 1 cm3.Deceased.  相似文献   
996.
The Energetic Particles Investigation (EPI) instrument operates during the pre-entry phase of the Galileo Probe. The major science objective is to study the energetic particle population in the innermost regions of the Jovian magnetosphere — within 4 radii of the cloud tops — and into the upper atmosphere. To achieve these objectives the EPI instrument will make omnidirectional measurements of four different particle species — electrons, protons, alpha-particles, and heavy ions (Z > 2). Intensity profiles with a spatial resolution of about 0.02 Jupiter radii will be recorded. Three different energy range channels are allocated to both electrons and protons to provide a rough estimate of the spectral index of the energy spectra. In addition to the omnidirectional measurements, sectored data will be obtained for certain energy range electrons, protons, and alpha-particles to determine directional anisotropies and particle pitch angle distributions. The detector assembly is a two-element telescope using totally depleted, circular silicon surfacebarrier detectors surrounded by a cylindrical tungsten shielding with a wall thickness of 4.86 g cm-2. The telescope axis is oriented normal to the spherical surface of the Probe's rear heat shield which is needed for heat protection of the scientific payload during the Probe's entry into the Jovian atmosphere. The material thickness of the heat shield determines the lower energy threshold of the particle species investigated during the Probe's pre-entry phase. The EPI instrument is combined with the Lightning and Radio Emission Detector (LRD) such that the EPI sensor is connected to the LRD/EPI electronic box. In this way, both instruments together only have one interface of the Probe's power, command, and data unit.  相似文献   
997.
When the basic step transform algorithm is used to compress synthetic-aperture radar (SAR) signals in azimuth, the linear FM rate and sampling rate must satisfy certain tight constraints. In practice, these constraints cannot be satisfied and errors are introduced into the compressed SAR image. A modification is described of the basic step transform which incorporates interpolation and resampling into the algorithm. These changes allow the removal of the constraints and make the step transform more useful for the compression of real data. An autofocusing capability is also included, without introducing much additional complexity  相似文献   
998.
999.
Profiles of the visible Fe X (6374 Å) coronal emission line as a function of height above the limb were obtained out to 1.16 solar radii in a coronal hole using the NSO/Sacramento Peak Observatory Coronagraph, Universal Spectrograph and a CCD camera. These are the first coronal line profiles obtained as a function of height in a coronal hole from the ground. Analysis of the line widths suggests a large component of nonthermal broadening which increases with height ranging from 40 to 60 km/s, depending upon the assumed temperature or thermal component of the profile.  相似文献   
1000.
The Pioneer 10, Pioneer 11, and Voyager 2 spacecraft were launched in 1972, 1974, and 1977, respectively. While these three spacecraft are all at compartively low heliographic latitudes compared with Ulysses, their observation span almost two solar cycles, a range of heliocentric distances from 1 to 57 AU, and provide a unique insight into the long-term variability of the global structure of the solar wind. We examine the spatial and temporal variation of average solar wind parameters and fluxes. Our obsevations suggest that the global structure of the outer heliosphere during the declining phase of the solar cycle at heliographic latitudes up to 17.5°N was charaterized by two competing phenomena: 1) a large-scale increase of solar wind density, temperature, mass flux, dynamic pressure, kinetic energy flux, and thermal enery flux with heliographic latitude, similar to the large-scale latitudinal gradient of velocity seen in IPS observations, 2) a small-scale decrease in velocity and temperature, and increase in density near the heliospheric current sheet, which is associated with a band of low speed, low temperature, and high density solar wind similar to that observed in the inner heliosphere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号