全文获取类型
收费全文 | 4830篇 |
免费 | 9篇 |
国内免费 | 9篇 |
专业分类
航空 | 2521篇 |
航天技术 | 1558篇 |
综合类 | 183篇 |
航天 | 586篇 |
出版年
2021年 | 30篇 |
2018年 | 69篇 |
2017年 | 36篇 |
2016年 | 41篇 |
2014年 | 74篇 |
2013年 | 101篇 |
2012年 | 106篇 |
2011年 | 159篇 |
2010年 | 102篇 |
2009年 | 182篇 |
2008年 | 193篇 |
2007年 | 114篇 |
2006年 | 89篇 |
2005年 | 86篇 |
2004年 | 115篇 |
2003年 | 139篇 |
2002年 | 180篇 |
2001年 | 200篇 |
2000年 | 93篇 |
1999年 | 123篇 |
1998年 | 154篇 |
1997年 | 99篇 |
1996年 | 138篇 |
1995年 | 168篇 |
1994年 | 146篇 |
1993年 | 95篇 |
1992年 | 122篇 |
1991年 | 57篇 |
1990年 | 63篇 |
1989年 | 125篇 |
1988年 | 58篇 |
1987年 | 60篇 |
1986年 | 51篇 |
1985年 | 152篇 |
1984年 | 120篇 |
1983年 | 108篇 |
1982年 | 117篇 |
1981年 | 153篇 |
1980年 | 56篇 |
1979年 | 46篇 |
1978年 | 57篇 |
1977年 | 37篇 |
1976年 | 40篇 |
1975年 | 48篇 |
1974年 | 39篇 |
1973年 | 25篇 |
1972年 | 49篇 |
1971年 | 47篇 |
1970年 | 30篇 |
1969年 | 33篇 |
排序方式: 共有4848条查询结果,搜索用时 0 毫秒
261.
Search and rescue satellite aided tracking (SARSAT) depends on the processing of emergency locator transmitter (ELT) signals which are received by a satellite in low polar orbit. Since the signal from a distressed vehicle is normally immersed in a background of other ELT signals (false alarms), interference, and noise, different methods of spectral estimation can provide advantages in estimating carrier frequency. A comparison between average spectrum and minimum spectrum for several real signals is provided here. 相似文献
262.
Active Spacecraft Potential Control Investigation 总被引:1,自引:0,他引:1
K. Torkar R. Nakamura M. Tajmar C. Scharlemann H. Jeszenszky G. Laky G. Fremuth C. P. Escoubet K. Svenes 《Space Science Reviews》2016,199(1-4):515-544
263.
264.
Coronal holes are the coolest and darkest regions of the upper solar atmosphere, as observed both on the solar disk and above the solar limb. Coronal holes are associated with rapidly expanding open magnetic fields and the acceleration of the high-speed solar wind. During the years of the solar minima, coronal holes are generally confined to the Sun??s polar regions, while at solar maxima they can also be found at lower latitudes. Waves, observed via remote sensing and detected in-situ in the wind streams, are most likely responsible for the wind and several theoretical models describe the role of MHD waves in the acceleration of the fast solar wind. This paper reviews the observational evidences of detection of propagating waves in these regions. The characteristics of the waves, like periodicities, amplitude, speed provide input parameters and also act as constraints on theoretical models of coronal heating and solar wind acceleration. 相似文献
265.
Deborah L. Domingue Clark R. Chapman Rosemary M. Killen Thomas H. Zurbuchen Jason A. Gilbert Menelaos Sarantos Mehdi Benna James A. Slavin David Schriver Pavel M. Trávníček Thomas M. Orlando Ann L. Sprague David T. Blewett Jeffrey J. Gillis-Davis William C. Feldman David J. Lawrence George C. Ho Denton S. Ebel Larry R. Nittler Faith Vilas Carle M. Pieters Sean C. Solomon Catherine L. Johnson Reka M. Winslow Jörn Helbert Patrick N. Peplowski Shoshana Z. Weider Nelly Mouawad Noam R. Izenberg William E. McClintock 《Space Science Reviews》2014,181(1-4):121-214
Mercury’s regolith, derived from the crustal bedrock, has been altered by a set of space weathering processes. Before we can interpret crustal composition, it is necessary to understand the nature of these surface alterations. The processes that space weather the surface are the same as those that form Mercury’s exosphere (micrometeoroid flux and solar wind interactions) and are moderated by the local space environment and the presence of a global magnetic field. To comprehend how space weathering acts on Mercury’s regolith, an understanding is needed of how contributing processes act as an interactive system. As no direct information (e.g., from returned samples) is available about how the system of space weathering affects Mercury’s regolith, we use as a basis for comparison the current understanding of these same processes on lunar and asteroidal regoliths as well as laboratory simulations. These comparisons suggest that Mercury’s regolith is overturned more frequently (though the characteristic surface time for a grain is unknown even relative to the lunar case), more than an order of magnitude more melt and vapor per unit time and unit area is produced by impact processes than on the Moon (creating a higher glass content via grain coatings and agglutinates), the degree of surface irradiation is comparable to or greater than that on the Moon, and photon irradiation is up to an order of magnitude greater (creating amorphous grain rims, chemically reducing the upper layers of grains to produce nanometer-scale particles of metallic iron, and depleting surface grains in volatile elements and alkali metals). The processes that chemically reduce the surface and produce nanometer-scale particles on Mercury are suggested to be more effective than similar processes on the Moon. Estimated abundances of nanometer-scale particles can account for Mercury’s dark surface relative to that of the Moon without requiring macroscopic grains of opaque minerals. The presence of nanometer-scale particles may also account for Mercury’s relatively featureless visible–near-infrared reflectance spectra. Characteristics of material returned from asteroid 25143 Itokawa demonstrate that this nanometer-scale material need not be pure iron, raising the possibility that the nanometer-scale material on Mercury may have a composition different from iron metal [such as (Fe,Mg)S]. The expected depletion of volatiles and particularly alkali metals from solar-wind interaction processes are inconsistent with the detection of sodium, potassium, and sulfur within the regolith. One plausible explanation invokes a larger fine fraction (grain size <45 μm) and more radiation-damaged grains than in the lunar surface material to create a regolith that is a more efficient reservoir for these volatiles. By this view the volatile elements detected are present not only within the grain structures, but also as adsorbates within the regolith and deposits on the surfaces of the regolith grains. The comparisons with findings from the Moon and asteroids provide a basis for predicting how compositional modifications induced by space weathering have affected Mercury’s surface composition. 相似文献
266.
The paper presents a technique of calculating the life for gas turbine engine parts in a low cycle area based on the influence coefficients taking into account analytical and operational factors. A statistical method is used to determine the influence coefficients. 相似文献
267.
D. B. Reisenfeld D. S. Burnett R. H. Becker A. G. Grimberg V. S. Heber C. M. Hohenberg A. J. G. Jurewicz A. Meshik R. O. Pepin J. M. Raines D. J. Schlutter R. Wieler R. C. Wiens T. H. Zurbuchen 《Space Science Reviews》2007,130(1-4):79-86
Analysis of the Genesis samples is underway. Preliminary elemental abundances based on Genesis sample analyses are in good
agreement with in situ-measured elemental abundances made by ACE/SWICS during the Genesis collection period. Comparison of
these abundances with those of earlier solar cycles indicates that the solar wind composition is relatively stable between
cycles for a given type of flow. ACE/SWICS measurements for the Genesis collection period also show a continuum in compositional
variation as a function of velocity for the quasi-stationary flow that defies the simple binning of samples into their sources
of coronal hole (CH) and interstream (IS). 相似文献
268.
Phenneger M. Woodward J. Cox R. Gliniak C. 《Aerospace and Electronic Systems Magazine, IEEE》2008,23(7):4-4
This describes a NOAA-14 spacecraft loss of control event and the lessons learned. The lessons learned are in two categories: contingency recovery operations; and on-orbit propulsion system isolation methods. The work is motivated in recognition of the effort of the NOAA off-line engineering support team and their NOAA civil servant mission leads and operations support staff. 相似文献
269.
Leslie A. Young S. Alan Stern Harold A. Weaver Fran Bagenal Richard P. Binzel Bonnie Buratti Andrew F. Cheng Dale Cruikshank G. Randall Gladstone William M. Grundy David P. Hinson Mihaly Horanyi Donald E. Jennings Ivan R. Linscott David J. McComas William B. McKinnon Ralph McNutt Jeffery M. Moore Scott Murchie Catherine B. Olkin Carolyn C. Porco Harold Reitsema Dennis C. Reuter John R. Spencer David C. Slater Darrell Strobel Michael E. Summers G. Leonard Tyler 《Space Science Reviews》2008,140(1-4):93-127
The New Horizons spacecraft will achieve a wide range of measurement objectives at the Pluto system, including color and panchromatic maps, 1.25–2.50 micron spectral images for studying surface compositions, and measurements of Pluto’s atmosphere (temperatures, composition, hazes, and the escape rate). Additional measurement objectives include topography, surface temperatures, and the solar wind interaction. The fulfillment of these measurement objectives will broaden our understanding of the Pluto system, such as the origin of the Pluto system, the processes operating on the surface, the volatile transport cycle, and the energetics and chemistry of the atmosphere. The mission, payload, and strawman observing sequences have been designed to achieve the NASA-specified measurement objectives and maximize the science return. The planned observations at the Pluto system will extend our knowledge of other objects formed by giant impact (such as the Earth–moon), other objects formed in the outer solar system (such as comets and other icy dwarf planets), other bodies with surfaces in vapor-pressure equilibrium (such as Triton and Mars), and other bodies with N2:CH4 atmospheres (such as Titan, Triton, and the early Earth). 相似文献
270.
V. Florinski A. Balogh J. R. Jokipii D. J. McComas M. Opher N. V. Pogorelov J. D. Richardson E. C. Stone B. E. Wood 《Space Science Reviews》2009,143(1-4):57-83
Properties of the heliospheric interface, a complex product of an interaction between charged and neutral particles and magnetic fields in the heliosphere and surrounding Circumheliospheric Medium, are far from being fully understood. Recent Voyager spacecraft encounters with the termination shock and their observations in the heliosheath revealed multiple energetic particle populations and noticeable spatial asymmetries not accounted for by the classic theories. Some of the challenges still facing space physicists include the origin of anomalous cosmic rays, particle acceleration downstream of the termination shock, the role of interstellar magnetic fields in producing the global asymmetry of the interface, the influence of charge exchange and interstellar neutral atoms on heliospheric plasma flows, and the signatures of solar magnetic cycle in the heliosheath. These and other outstanding issues are reviewed in this joint report of working groups 4 and 6. 相似文献