首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
航空   13篇
航天技术   6篇
综合类   1篇
  2004年   1篇
  2003年   1篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1992年   1篇
  1983年   3篇
  1981年   6篇
  1980年   1篇
  1979年   1篇
  1969年   1篇
  1966年   1篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
11.
The role of convection in the core helium flash is simulated by two-dimensional eddies interacting with the thermonuclear runaway. These eddies are followed by the explicit solution of the 2D conservation laws with a 2D finite difference hydrodynamics code. Thus, no phenomenological theory of convection such as the local mixing length theory is required.Our core helium flash is violent, producing a deflagration wave. This differs from the detonation wave (and subsequent disruption of the entire star) produced in previous spherically symmetric violent core helium flashes as the second dimension provides a degree of relief which allows the expansion wave to decouple itself from the burning front. Our results predict that a considerable amount of helium in the core will be burned before the horizontal branch is reached and that some envelope mass loss is likely.  相似文献   
12.
The dissipation of energy of electric fields and currents in the polar auroral atmosphere is a major source of energy for the thermosphere ranging locally up to 100 ergs cm?2 sec?1 and perhaps more during the most intense disturbance. Globally the input of energy to the thermosphere can often exceed that due to solar EUV radiation. This energy source is always significant in polar regions and its variable strength with respect to that of the solar EUV radiation determines the behaviour of the middle and low latitude thermosphere. It is extremely difficult to model because of its variability in space and time. Nevertheless understanding the dynamics and composition of the global thermosphere is dependent upon incorporation of this source realistically into models. A further important aspect of this energy source is the consequences of its action in changing the density and composition of the thermosphere globally leading to subsequent changes in the absorption of solar EUV radiation. The ring current may also, at times, be a significant source of energy to the low latitude thermosphere.  相似文献   
13.
This paper reviews the subject of the dissipation of internal gravity waves in the thermosphere and shows how this is related to propagation. Differences of dissipation and heating rates in quiet and disturbed atmospheres are discussed, and the ranges of waves for different source heights in these atmospheres are calculated. Despite heavy damping of the waves, they may explain T.I.D.'s and related airglow observations in middle and low latitudes.  相似文献   
14.
The hot white dwarf HZ43 was observed by the soft X-ray experiment on the Ariel 6 satellite from 1980 March 1.8 to March 8.7. The pulse height spectrum has been fit to an input black body spectrum of temperature 140 000 K. An upper limit of 10% has been placed on the source variability on time scales of minutes.  相似文献   
15.
Observations of Cygnus X-1 during the high-low transition of June–July 1980 reveal an intense flux between 0.5 and 1.5 keV. Although the intensity broadly follows the 1–12 keV flux through the transition, there is no evidence of variations in the shape of the energy spectrum. The implications of these results and derived limits on the minute-to-minute variability are discussed.  相似文献   
16.
The aurorae are the result of collisions with the atmosphere of energetic particles that have their origin in the solar wind, and reach the atmosphere after having undergone varying degrees of acceleration and redistribution within the Earth's magnetosphere. The global scale phenomenon represented by the aurorae therefore contains considerable information concerning the solar-terrestrial connection. For example, by correctly measuring specific auroral emissions, and with the aid of comprehensive models of the region, we can infer the total energy flux entering the atmosphere and the average energy of the particles causing these emissions. Furthermore, from these auroral emissions we can determine the ionospheric conductances that are part of the closing of the magnetospheric currents through the ionosphere, and from these we can in turn obtain the electric potentials and convective patterns that are an essential element to our understanding of the global magnetosphere-ionosphere-thermosphere-mesosphere. Simultaneously acquired images of the auroral oval and polar cap not only yield the temporal and spatial morphology from which we can infer activity indices, but in conjunction with simultaneous measurements made on spacecraft at other locations within the magnetosphere, allow us to map the various parts of the oval back to their source regions in the magnetosphere. This paper describes the Ultraviolet Imager for the Global Geospace Sciences portion of the International Solar-Terrestrial Physics program. The instrument operates in the far ultraviolet (FUV) and is capable of imaging the auroral oval regardless of whether it is sunlit or in darkness. The instrument has an 8° circular field of view and is located on a despun platform which permits simultaneous imaging of the entire oval for at least 9 hours of every 18 hour orbit. The three mirror, unobscured aperture, optical system (f/2.9) provides excellent imaging over this full field of view, yielding a per pixel angular resolution of 0.6 milliradians. Its FUV filters have been designed to allow accurate spectral separation of the features of interest, thus allowing quantitative interpretation of the images to provide the parameters mentioned above. The system has been designed to provide ten orders of magnitude blocking against longer wavelength (primarily visible) scattered sunlight, thus allowing the first imaging of key, spectrally resolved, FUV diagnostic features in the fully sunlit midday aurorae. The intensified-CCD detector has a nominal frame rate of 37 s, and the fast optical system has a noise equivalent signal within one frame of 10R. The instantaneous dynamic range is >1000 and can be positioned within an overall gain range of 104, allowing measurement of both the very weak polar cap emissions and the very bright aurora. The optical surfaces have been designed to be sufficiently smooth to permit this dynamic range to be utilized without the scattering of light from bright features into the weaker features. Finally, the data product can only be as good as the degree to which the instrument performance is characterized and calibrated. In the VUV, calibration of an an imager intended for quantitative studies is a task requiring some pioneering methods, but it is now possible to calibrate such an instrument over its focal plane to an accuracy of ±10%. In summary, very recent advances in optical, filter and detector technology have been exploited to produce an auroral imager to meet the ISTP objectives.  相似文献   
17.
The role of multispectral and thermal imagery in mineral exploration is evaluated for two areas with favourable geological conditions within contrasting physical environments — one in the semi-arid low tree and shrub savannas of western Queensland and northern South Australia, the other in the humid subtropical forest zone of western Yunnan, China.For both areas Landsat imagery was used to identify structures and lithologies favourable for mineralization and locate ironstones/gossans indicative of mineralized bedrock. HCMM imagery was used alongside Landsat imagery to identify former and ephemeral drainage patterns important for the interpretation of geochemical data over covered ground in Australia. Interpretations were made of enhanced colour composites, outputs of MSS band ratios and colour rotated images generated from both NASA film products and CCTs. These were checked by field studies during which plant, soil and rock chip samples for subsequent metals analyses were collected from areas of anomalous vegetation and from barren ironstones. Some rock chip samples from Australia contained concentrations of copper or lead or small amounts of other metals. In China geobotanical anomalies over ironstones from which soil and rock samples yielded copper, lead, zinc, tin and silver suggest the presence of a major belt of potential multi-metal mineralization.  相似文献   
18.
Cole  T. D.  Boies  M. T.  El-Dinary  A. S.  Cheng  A.  Zuber  M. T.  Smith  D. E. 《Space Science Reviews》1997,82(1-2):217-253
In 1999 after a 3-year transit, the Near-Earth Asteroid Rendezvous (NEAR) spacecraft will enter a low-altitude orbit around the asteroid, 433 Eros. Onboard the spacecraft, five facility instruments will operate continuously during the planned one-year orbit at Eros. One of these instruments, the NEAR Laser Rangefinder (NLR), will provide sufficiently high resolution and accurate topographical profiles that when combined with gravity estimates will result with quantitative insight into the internal structure, rotational dynamics, and evolution of Eros. Developed at the Applied Physics Laboratory (APL), the NLR instrument is a direct-detection laser radar using a bistatic arrangement. The transmitter is a gallium arsenide (GaAs) diode-pumped Cr:Nd:YAG (1.064-µm) laser and the separate receiver uses an extended infrared performance avalanche-photodiode (APD) detector with 7.62-cm clear aperture Dall–Kirkham telescope. The lithium-niobate (LiNbO3) Q-switched transmitter emits 15-ns pulses at 15.3 mJ pulse-1, permitting reliable NLR operation beyond the required 50-km altitude. With orbital velocity of 5 m s-1 and a sampling rate of 1 Hz, the NLR spot size provides high spatial sampling of Eros along the orbital direction. Cross-track sampling, determined by the specific orbital geometry with Eros, defines the resolution of the global topographic model; this spacing is expected to be <500 m on the asteroid's surface. Combining the various sources of range errors results with an overall range accuracy of 6 m with respect to Eros' center-of-mass. The NLR instrument design, perfomance, and validation testing is decribed. In addition, data derived from the NLR are discussed. Using altimetry data from the NLR, we expect to estimate the volume of 433 Eros to 0.01% and its mass to 0.0001% accuracies; significantly greater accuracies than ever possible before NEAR.  相似文献   
19.
Cultured human embryonic kidney cells were separated into electrophoretic subpopulations in laboratory experiments and in two separation experiments on the STS-8 (Challenger) Space Shuttle flight using the mid-deck Continuous Flow Electrophoretic Separator (CFES). Populations of cells from each fraction were cultured for the lifetime of the cells, and supernatant medium was withdrawn and replaced at 4-day intervals. Withdrawn medium was frozen at -120 degrees C for subsequent analysis. Enzyme assays, antibodies and gel electrophoresis were used as analytical tools for the detection and quantitation of plasminogen activators in these samples. These assays of frozen culture supernatant fluids confirmed the electrophoretic separation of plasminogen-activator producing cells from non-producing cells, the isolation of cells capable of sustained production, and the separation of cells that produce different plasminogen activators from one another.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号