全文获取类型
收费全文 | 3710篇 |
免费 | 60篇 |
国内免费 | 42篇 |
专业分类
航空 | 1758篇 |
航天技术 | 1344篇 |
综合类 | 71篇 |
航天 | 639篇 |
出版年
2022年 | 21篇 |
2021年 | 39篇 |
2018年 | 55篇 |
2017年 | 62篇 |
2016年 | 41篇 |
2015年 | 35篇 |
2014年 | 77篇 |
2013年 | 102篇 |
2012年 | 86篇 |
2011年 | 164篇 |
2010年 | 115篇 |
2009年 | 141篇 |
2008年 | 207篇 |
2007年 | 115篇 |
2006年 | 110篇 |
2005年 | 118篇 |
2004年 | 81篇 |
2003年 | 116篇 |
2002年 | 90篇 |
2001年 | 105篇 |
2000年 | 88篇 |
1999年 | 102篇 |
1998年 | 107篇 |
1997年 | 101篇 |
1996年 | 88篇 |
1995年 | 104篇 |
1994年 | 107篇 |
1993年 | 64篇 |
1992年 | 75篇 |
1991年 | 39篇 |
1990年 | 44篇 |
1989年 | 74篇 |
1988年 | 39篇 |
1987年 | 32篇 |
1986年 | 34篇 |
1985年 | 114篇 |
1984年 | 79篇 |
1983年 | 79篇 |
1982年 | 60篇 |
1981年 | 103篇 |
1980年 | 25篇 |
1979年 | 27篇 |
1978年 | 33篇 |
1977年 | 25篇 |
1976年 | 23篇 |
1975年 | 39篇 |
1972年 | 33篇 |
1971年 | 25篇 |
1969年 | 22篇 |
1967年 | 23篇 |
排序方式: 共有3812条查询结果,搜索用时 27 毫秒
271.
We examine X-ray maps of the whole sky covering energies from 0.1 to 6 keV. We model Loop I X-ray emission as being caused by an old supernova that exploded into an already warm interstellar medium. After comparison with Loop III we deduce that there may be a general temperature gradient in the gas as we move away from the plane in the northern galactic hemisphere. 相似文献
272.
Closed-form expressions are derived for the output noise response of an ?-?-? filter in steady-state operation with constant measurement noise statistics. To the author's knowledge such expressions have been unavailable until now. These formulas are useful for target tracking applications. 相似文献
273.
A multiple model adaptive estimator (MMAE) has been formulated to estimate the state of a dynamic system modeled by a linear stochastic differential equation, from which measurements, described as a noise-corrupted space-time point process functionally related to that state, are extracted. Assumed certainty equivalence is used to combine such an estimator with the LQ full-state feedback controller to synthesize a practical, implementable controller. Performance of the estimator and resultant controller characteristics are investigated via simulation as a function of approximation method used to limit the full-scale estimator to finite dimensionality and also as a function of important parameters defining the dynamics and observation processes. 相似文献
274.
A method is given to calculate the shape a high-altitude reflector must have to produce any intensity distribution inside the illuminated ground area. The method consists of setting up and solving a differential equation appropriate to the required ground intensity distribution. Cylindrical and spherical mirrors are discussed in detail, and mirror shapes for producing a particular type of uniform ground illumination are derived. These shapes approach paraboloids in the limit when the mirror altitude is much greater than the diameter of the illuminated area. 相似文献
275.
Interplanetary origin of geomagnetic storms 总被引:8,自引:0,他引:8
Gonzalez Walter D. Tsurutani Bruce T. Clúa de Gonzalez Alicia L. 《Space Science Reviews》1999,88(3-4):529-562
Around solar maximum, the dominant interplanetary phenomena causing intense magnetic storms (Dst<−100 nT) are the interplanetary
manifestations of fast coronal mass ejections (CMEs). Two interplanetary structures are important for the development of storms,
involving intense southward IMFs: the sheath region just behind the forward shock, and the CME ejecta itself. Whereas the
initial phase of a storm is caused by the increase in plasma ram pressure associated with the increase in density and speed
at and behind the shock (accompanied by a sudden impulse [SI] at Earth), the storm main phase is due to southward IMFs. If
the fields are southward in both of the sheath and solar ejecta, two-step main phase storms can result and the storm intensity
can be higher. The storm recovery phase begins when the IMF turns less southward, with delays of ≈1–2 hours, and has typically
a decay time of 10 hours. For CMEs involving clouds the intensity of the core magnetic field and the amplitude of the speed
of the cloud seems to be related, with a tendency that clouds which move at higher speeds also posses higher core magnetic
field strengths, thus both contributing to the development of intense storms since those two parameters are important factors
in genering the solar wind-magnetosphere coupling via the reconnection process.
During solar minimum, high speed streams from coronal holes dominate the interplanetary medium activity. The high-density,
low-speed streams associated with the heliospheric current sheet (HCS) plasma impinging upon the Earth's magnetosphere cause
positive Dst values (storm initial phases if followed by main phases). In the absence of shocks, SIs are infrequent during
this phase of the solar cycle. High-field regions called Corotating Interaction Regions (CIRs) are mainly created by the fast
stream (emanating from a coronal hole) interaction with the HCS plasma sheet. However, because the Bz component is typically highly fluctuating within the CIRs, the main phases of the resultant magnetic storms typically have
highly irregular profiles and are weaker. Storm recovery phases during this phase of the solar cycle are also quite different
in that they can last from many days to weeks. The southward magnetic field (Bs) component of Alfvén waves in the high speed stream proper cause intermittent reconnection, intermittent substorm activity,
and sporadic injections of plasma sheet energy into the outer portion of the ring current, prolonging its final decay to quiet
day values. This continuous auroral activity is called High Intensity Long Duration Continuous AE Activity (HILDCAAs).
Possible interplanetary mechanisms for the creation of very intense magnetic storms are discussed. We examine the effects
of a combination of a long-duration southward sheath magnetic field, followed by a magnetic cloud Bs event. We also consider the effects of interplanetary shock events on the sheath plasma. Examination of profiles of very
intense storms from 1957 to the present indicate that double, and sometimes triple, IMF Bs events are important causes of such events. We also discuss evidence that magnetic clouds with very intense core magnetic
fields tend to have large velocities, thus implying large amplitude interplanetary electric fields that can drive very intense
storms. Finally, we argue that a combination of complex interplanetary structures, involving in rare occasions the interplanetary
manifestations of subsequent CMEs, can lead to extremely intense storms.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
276.
J. L. Kohl S. Fineschi R. Esser A. Ciaravella S. R. Cranmer L. D. Gardner R. Suleiman G. Noci A. Modigliani 《Space Science Reviews》1999,87(1-2):233-236
Ultraviolet emission line profiles have been measured on 15-29 September 1997 for H I 1216 Å, O VI 1032, 1037 Å and Mg X 625 Å in a polar coronal hole, at heliographic heights ? (in solar radii) between 1.34 and 2.0. Observations of H I 1216 Å and the O VI doublet from January 1997 for ? = 1.5 to 3.0 are provided for comparison. Mg X 625 Å is observed to have a narrow component at ? = 1.34 which accounts for only a small fraction of the observed spectral radiance, and a broad component that exists at all observed heights. The widths of O VI broad components are only slightly larger than those for H I at ? = 1.34, but are significantly larger at ? = 1.5 and much larger for ? > 1.75. In contrast, the Mg X values are less than those of H I up to 1.75 and then increase rapidly up to at least ? = 2.0, but never reach the values of O VI. 相似文献
277.
L. Ofman M. Romoli G. Noci G. Poletto J. L. Kohl R. A. Howard C. St. Cyr C. E. Deforest 《Space Science Reviews》1999,87(1-2):287-290
In recent UVCS/SOHO White Light Channel (WLC) observations we found quasi-periodic variations in the polarized brightness
(pB) in the polar coronal holes at heliocentric distances of 1.9 to 2.45 solar radii. The motivation for the observation is
the 2.5D MHD model of solar wind acceleration by nonlinear waves, that predicts compressive fluctuations in coronal holes.
In February 1998 we performed new observations using the UVCS/WLC in the coronal hole and obtained additional data. The new
data corroborate our earlier findings with higher statistical significance. The new longer observations show that the power
spectrum peaks in the 10–12 minute range. These timescales agree with EIT observations of brightness fluctuations in polar
plumes. We performed preliminary LASCO/C2 observations in an effort to further establish the coronal origin of the fluctuations.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
278.
279.
We study particle trajectories at an X-type neutral point, in the presence of a time-varying electric field. We present consequent distributions of electrons and protons, and suggest that a disturbance propagating through a neutral point may damp by particle acceleration. 相似文献
280.
Carlson B.D. Evans E.D. Wilson S.L. 《IEEE transactions on aerospace and electronic systems》1994,30(1):109-115
For pt.I see ibid., vol.30, no.1, (Jan.1994). This paper describes the calculation of PF and PD for the Hough transform technique when the primary threshold crossings are weighted by their power before transforming (i.e., noncoherent integration). After expressions for PF and PD are derived, we examine the question of optimal granularity of the Hough accumulator space. We also investigate the relationship between primary and secondary thresholds and its effect on detectability 相似文献