排序方式: 共有37条查询结果,搜索用时 15 毫秒
21.
By an extension to the theory of sequential detection with dependent measurements, it is possible to develop a sequential probability ratio test (SPRT) to detect changes in regime in a Gauss-Markov process rather than detecting which of the two regimes exists. It is shown how a posterior form of this extended SPRT may be simplified to reduce computational complexity. The simplified SPRT's are in fact modifications of the original SPRT detecting the regime and not the change. The tests are applied to the problem of fault detection in a gyro navigational system; the results of a detailed computer simulation are given. 相似文献
22.
Most satellite systems for locating an object on Earth use only time difference of arrival (TDOA) measurements. When there are relative motions between an emitter and receivers, frequency difference of arrival (FDOA) measurements can be used as well. Often, the altitude of an object is known (it is zero, for example) or can be measured with an altimeter. Two sets of geolocation solutions are proposed which exploit the altitude constraint to improve the localization accuracy. One is for TDOAs alone and the other for the combination of TDOA and FDOA measurements. The additional complexity by imposing the constraint is a one-dimensional Newton's search and the rooting of a polynomial. The covariance matrices of the new estimators are derived under a small measurement noise assumption and shown to attain the constrained Cramer-Rao lower bound (CRLB). When there is a bias error in the assumed altitude, using the altitude constraint will introduce a bias to the solution. Since applying the constraint decreases the variance, there is a tradeoff between variance and bias in the mean square error (MSE). The maximum allowable altitude error such that the constraint solution will remain superior to the unconstraint is given. Simulation results are included to corroborate the theoretical development. 相似文献
23.
Ick Ho Whang Jang Gyu Lee Tae Kyung Sung 《IEEE transactions on aerospace and electronic systems》1994,30(1):220-228
An adaptive tracking filter for maneuvering targets is proposed using modified input estimation technique. Pseudoresiduals are defined using measurements and the velocity estimate at the hypothesized maneuver onset time. With the pseudoresiduals and a new target model representing transitions of nominal accelerations, a new input estimation method for tracking a maneuvering target is derived. Since the proposed detection technique is more sensitive to maneuvers than previous work, the shorter window length can be employed to detect and compensate target maneuvers. Also shown is that the tracking performance of the proposed filter is similar to that of interacting multiple model method (IMM) with 3 models, while computational loads of our method are drastically reduced 相似文献
24.
This work is concerned with the assignment of a desired PD-eigenstructure for linear time-varying systems. Despite its well-known limitations, gain scheduling control appeared to be a focus of the research efforts. Scheduling of frozen-time, frozen-state controllers for fast time-varying dynamics is known to be mathematically fallacious, and practically hazardous. Therefore, recent research efforts are being directed towards applying time-varying controllers. In this paper we: 1) introduce a differential algebraic eigenvalue theory for linear time-varying systems; and 2) propose a PD-eigenstructure assignment scheme via a differential Sylvester equation and a command generator tracker (CGT) for linear time-varying systems. The PD-eigenstructure assignment is utilized as a regulator. A feedforward gain for tracking control is computed by using the command generator tracker. The whole design procedures of the proposed PD-eigenstructure assignment scheme are systematic in nature. The scheme could be used to determine the stability of linear time-varying systems easily as well as to provide a new horizon of designing controllers for the linear time-varying systems. A missile flight control application is presented to validate the proposed schemes. 相似文献
25.
The Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) on the New Horizons Mission
Ralph L. McNutt Jr. Stefano A. Livi Reid S. Gurnee Matthew E. Hill Kim A. Cooper G. Bruce Andrews Edwin P. Keath Stamatios M. Krimigis Donald G. Mitchell Barry Tossman Fran Bagenal John D. Boldt Walter Bradley William S. Devereux George C. Ho Stephen E. Jaskulek Thomas W. LeFevere Horace Malcom Geoffrey A. Marcus John R. Hayes G. Ty Moore Nikolaos P. Paschalidis Mark E. Perry Bruce D. Williams Paul Wilson IV Lawrence E. Brown Martha B. Kusterer Jon D. Vandegriff 《Space Science Reviews》2009,145(3-4):381-381
26.
Jin Ho Kang Jeffrey A. Hinkley Keith L. Gordon Sheila A. Thibeault Robert G. Bryant Juan M. Fernandez W. Keats Wilkie Héctor E. Diaz Morales Donovan E. Mcgruder Ray S. Peterson Charlotte J. Brandenburg Evin L. Hill Nina R. Arcot 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(9):2727-2735
Deployable space structures are being built from thin-walled fiber-reinforced polymer composite materials due to their high specific strength, high specific stiffness, and designed bistability. However, the inherent viscoelastic behavior of the resin matrix can cause dimensional instability when the composite is stored under strain. The extended time of stowage between assembly and deployment in space can result in performance degradation and in the worst case, mission failure. In this study, the viscoelastic properties of candidate commercial polymers consisting of difunctional and tetrafunctional epoxies and thermoplastic and thermosetting polyimides were evaluated for deployable boom structures of solar sails. Stress relaxation master curves of the candidate polymers were used to predict the relaxation that would occur in 1 year at room temperature under relatively low strains of about 0.1%. A bismaleimide (BMI) showed less stress relaxation (about 20%) than the baseline novolac epoxy (about 50%). Carbon fiber composites fabricated with the BMI resin showed a 44% improvement in resistance to relaxation compared to the baseline epoxy composite. 相似文献
27.
T. M. Ho N. Thomas D. C. Boice C. Kollein L. A. Soderblom 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2003,31(12):2583-2589
Images obtained by the Miniature Integrated Camera and Imaging Spectrometer (MICAS) experiment onboard the Deep Space 1 spacecraft which encountered comet 19P/Borrelly on September 22nd 2001 show a dust coma dominated by jets. In particular a major collimated dust jet on the sunward side of the nucleus was observed. Our approach to analyse these features is to integrate the observed intensity in concentric envelopes around the nucleus. The same procedures has been used on the Halley Multicolour Camera images of comet 1P/Halley acquired on March 14th 1986. We are able to show that at Borrelly the dust brightness dependence as a function of radial distance is different to that of Halley. At large distances both comets show constant values as the size of the concentric envelopes increases (as one would expect for force free radial outflow). For Halley the integral decreases as one gets closer to the nucleus. Borrelly shows opposite behaviour. The main cause for Halley's intensity distribution is either high optical thickness or particle fragmentation. For Borrelly, we have constructed a simple model of the brightness distribution near the nucleus. This indicates that the influence of deviations from point source geometry is insufficient to explain the observed steepening of the intensity profile close to the nucleus. Dust acceleration or fragmentation into submicron particles appear to be required. We also estimate the dust production rate of Borrelly with respect to Halley and compare their dust to gas ratios. 相似文献
28.
Chen V.C. Li F. Ho S.-S. Wechsler H. 《IEEE transactions on aerospace and electronic systems》2006,42(1):2-21
When, in addition to the constant Doppler frequency shift induced by the bulk motion of a radar target, the target or any structure on the target undergoes micro-motion dynamics, such as mechanical vibrations or rotations, the micro-motion dynamics induce Doppler modulations on the returned signal, referred to as the micro-Doppler effect. We introduce the micro-Doppler phenomenon in radar, develop a model of Doppler modulations, derive formulas of micro-Doppler induced by targets with vibration, rotation, tumbling and coning motions, and verify them by simulation studies, analyze time-varying micro-Doppler features using high-resolution time-frequency transforms, and demonstrate the micro-Doppler effect observed in real radar data. 相似文献
29.
Jon Vandegriff Kiri Wagstaff George Ho Janice Plauger 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,36(12):2323-2327
We are developing a system to predict the arrival of interplanetary (IP) shocks at the Earth. These events are routinely detected by the Electron, Proton, and Alpha Monitor (EPAM) instrument aboard NASA’s ACE spacecraft, which is positioned at Lagrange Point 1 (L1). In this work, we use historical EPAM data to train an IP shock forecasting algorithm. Our approach centers on the observation that these shocks are often preceded by identifiable signatures in the energetic particle intensity data. Using EPAM data, we trained an artificial neural network to predict the time remaining until the shock arrival. After training this algorithm on 37 events, it was able to forecast the arrival time for 19 previously unseen events. The average uncertainty in the prediction 24 h in advance was 8.9 h, while the uncertainty improved to 4.6 h when the event was 12 h away. This system is accessible online, where it provides predictions of shock arrival times using real-time EPAM data. 相似文献
30.
Charles E. Schlemm II Richard D. Starr George C. Ho Kathryn E. Bechtold Sarah A. Hamilton John D. Boldt William V. Boynton Walter Bradley Martin E. Fraeman Robert E. Gold John O. Goldsten John R. Hayes Stephen E. Jaskulek Egidio Rossano Robert A. Rumpf Edward D. Schaefer Kim Strohbehn Richard G. Shelton Raymond E. Thompson Jacob I. Trombka Bruce D. Williams 《Space Science Reviews》2007,131(1-4):393-415
NASA’s MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) mission will further the understanding of
the formation of the planets by examining the least studied of the terrestrial planets, Mercury. During the one-year orbital
phase (beginning in 2011) and three earlier flybys (2008 and 2009), the X-Ray Spectrometer (XRS) onboard the MESSENGER spacecraft
will measure the surface elemental composition. XRS will measure the characteristic X-ray emissions induced on the surface
of Mercury by the incident solar flux. The Kα lines for the elements Mg, Al, Si, S, Ca, Ti, and Fe will be detected. The 12°
field-of-view of the instrument will allow a spatial resolution that ranges from 42 km at periapsis to 3200 km at apoapsis
due to the spacecraft’s highly elliptical orbit. XRS will provide elemental composition measurements covering the majority
of Mercury’s surface, as well as potential high-spatial-resolution measurements of features of interest. This paper summarizes
XRS’s science objectives, technical design, calibration, and mission observation strategy. 相似文献