首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
航空   12篇
航天技术   5篇
航天   8篇
  2021年   1篇
  2012年   1篇
  2011年   2篇
  2009年   1篇
  2007年   2篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
  1989年   1篇
  1986年   1篇
  1981年   3篇
  1979年   1篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1969年   1篇
  1968年   1篇
排序方式: 共有25条查询结果,搜索用时 125 毫秒
21.
NASA's proposed roadmap for robotic Mars exploration over the next decade is influenced by science goals, technology needs and budgetary considerations. These requirements could introduce potential changes to the succession of missions, resulting in both technology feed forward and heritage. For long duration robotic surface missions at locations, where solar power generation is not feasible or limited, Radioisotope Power Systems (RPS) could be considered. Thus, RPSs could provide enabling power technologies for some of these missions, covering a power range from 10s of milliwatts to potentially a kilowatt or even higher. Currently, NASA and DoE with their industry partners are developing two RPSs, both generating about 110 W(e) at BOL. These systems will be made available as early as 2009. The Multi-Mission Radioisotope Thermoelectric Generator (MMRTG)—with static power conversion—was down-selected as a potential power source for the MSL mission. Development of small-RPSs is in a planning stage by NASA and DoE; potentially targeting both the 10s of milliwatts and 10s of watts power ranges. If developed, Radioisotope Heat Unit (RHU) based systems—generating 10s to 100s of milliwatts—could power small adjunct elements on larger missions, while the GPHS module-based systems—each generating 10s of watts—could be stacked to provide the required power levels on MER class surface assets. MMRTGs and Stirling Radioisotope Generators (SRGs) could power MSL class or larger missions. Advanced Radioisotope Power Systems (ARPS) with higher specific powers and increased power conversion efficiencies could enhance or even enable missions towards the second half of the next decade. This study examines the available power system options and power selection strategies in line with the proposed mission lineup, and identifies the benefits and utility of the various options for each of the next decade launch opportunities.  相似文献   
22.
The ROSAT data of the hot DA white dwarf HS1234+4811 were analyzed in the framework of three different assumptions for the structure of the white dwarf's atmosphere. It could be excluded that the star has a homogeneously mixed photosphere consisting of helium and hydrogen only, but from ROSAT observations alone it is not possible to decide if the object has a stratified atmosphere with an ultrathin hydrogen layer (MH ≈ 7 · 10−14M) on top of the He envelope or if heavier elements are responsible for the absorption in the soft X-ray region.  相似文献   
23.
Two Earth-orbiting radar missions are planned for the near future by NASA-Shuttle Radar Topography Mission (SRTM) and LightSAR. The SRTM will fly aboard the Shuttle using interferometric synthetic aperture radar (IFSAR) to provide a global digital elevation map. SRTM is jointly sponsored by NASA and the National Imagery and Mapping Agency (NIMA). The LightSAR will utilize emerging technology to reduce mass and life-cycle costs for a mission to acquire SAR data for Earth science and civilian applications and to establish commercial utility. LightSAR is sponsored by NASA and industry partners. The use of IFSAR to measure elevation is one of the most powerful and practical applications of radar. A properly equipped spaceborne IFSAR system can produce a highly accurate global digital elevation map, including cloud-covered areas, in significantly less time and at significantly lower cost than other systems. For accurate topography over a large area, the interferometric measurements can be performed simultaneously in physically separate receive systems. Since LightSAR offers important benefits to both the science community and US industry, an innovative government-industry teaming approach is being explored, with industry sharing the cost of developing LightSAR in return for commercial rights to its data and operational responsibility. LightSAR will enable mapping of surface change. The instrument's high-resolution mapping, along with its quad polarization, dual polarization, interferometric and ScanSAR modes will enable continuous monitoring of natural hazards, Earth's surface deformation, surface vegetation change, and ocean mesoscale features to provide commercially viable and scientifically valuable data products. Advanced microelectronics and lightweight materials will increase LightSAR's functionality without increasing the mass. Dual frequency L/X-band designs have been examined  相似文献   
24.
The problems of engineering professionalism, working conditions, and ethics have long been a subject of much controversy but little well-written material. In this paper, the author attempts to analyze some of the more troublesome of these problems, and offers a few solutions of his own device. Although written in a semi-humorous vein, the subject material deals directly with professional/ethical problems faced by the contemporary engineer working for an employer.  相似文献   
25.
The Solar Optical Telescope (SOT), which NASA plans to operate on Spacelab, should provide resolution down to 0.1 arc sec, thus offering the capability for solving a number of fundamental problems in solar magnetism and in atmospheric heating and dynamics.Proceedings of the Conference Solar Physics from Space, held at the Swiss Federal Institute of Technology Zurich (ETHZ), 11–14 November 1980.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号