首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6048篇
  免费   1949篇
  国内免费   919篇
航空   5406篇
航天技术   1036篇
综合类   574篇
航天   1900篇
  2024年   48篇
  2023年   161篇
  2022年   442篇
  2021年   509篇
  2020年   467篇
  2019年   405篇
  2018年   394篇
  2017年   502篇
  2016年   330篇
  2015年   391篇
  2014年   385篇
  2013年   439篇
  2012年   516篇
  2011年   518篇
  2010年   405篇
  2009年   435篇
  2008年   428篇
  2007年   407篇
  2006年   403篇
  2005年   353篇
  2004年   305篇
  2003年   197篇
  2002年   180篇
  2001年   127篇
  2000年   102篇
  1999年   58篇
  1998年   4篇
  1997年   4篇
  1988年   1篇
排序方式: 共有8916条查询结果,搜索用时 15 毫秒
941.
针对某型航空发动机,考虑到离心力和气动力共同作用的影响,对该型发动机风扇叶片进行了有限元建模和强度分析,其中对气动力的加载进行了适当的简化。计算结果表明,该型叶片具有较高的静强度储备;应力集中区域在风扇叶片叶盆靠近叶根的区域,是叶片的几何形状以及离心力和气动力共同作用的结果。  相似文献   
942.
马旭  程咏梅  郝帅  陈克喆  王涛 《航空学报》2015,36(2):596-604
对未知着降区平坦度测量是无人机在复杂地形下安全着陆的关键问题。首先,根据小孔成像原理推导出基于单目序列图像的未知区域深度计算方程;其次,针对稀疏匹配存在深度信息重构误差大而稠密匹配在平滑区域误匹配率高的问题,提出一种基于Delaunay三角剖分的稠密点特征生成算法;然后,分别对序列图像中的2帧图像提取亚像素级Harris角点和尺度不变特征变换(SIFT)特征点,并分别进行特征点匹配;再以2种特征点间的欧氏距离作为约束条件将2种特征点进行融合,生成准稠密特征点;最后,将准稠密特征点进行Delaunay三角剖分,并根据每个剖分三角形上3个顶点像素偏差的方差值制定稠密特征点的生成策略,并结合所提出的深度计算方程计算整个未知区域各点的深度信息。通过Vega Prime(VP)搭建仿真演示验证系统,实验结果表明在机载相机距地面400m处计算高度分别为90m和55m的物体深度信息时,其深度测量相对误差不超过0.89%,具有较高的精度。  相似文献   
943.
一种孔径和频率二维稀疏的步进频SAR成像方法   总被引:1,自引:0,他引:1  
顾福飞  张群  娄昊  杨秋  陈一畅 《航空学报》2015,36(4):1221-1229
 步进频率信号(SFWs)在不增加雷达系统瞬时带宽的情况下能够获得高的距离向分辨率的同时,也存在着抗干扰能力较差及其等效重复频率较低的问题,并且在方位向积累时间内由于雷达载机工作状态的变化,会导致方位向的数据录取不完整。针对上述问题,提出一种孔径和频率二维稀疏的步进频合成孔径雷达(SAR)成像方法。首先,分析了稀疏步进频率信号(SSFWs)的SAR成像模型,然后基于压缩感知理论完成距离向成像处理。其次,针对稀疏孔径的回波数据,通过构造成像算子和压缩感知重建模型的方法实现其距离徙动校正和方位压缩处理,进而获得二维成像结果。相比于传统的步进频率信号SAR成像,利用所提方法能够在少量的频率资源和雷达回波数据情况下实现准确的SAR成像。最后,通过对仿真和实测的步进频率雷达数据进行成像处理,验证了所提方法的有效性和可行性。  相似文献   
944.
韩景龙  陈全龙  员海玮 《航空学报》2015,36(4):1034-1055
直升机的气动弹性问题与固定翼飞机不同,不仅要考虑单片桨叶,更要将旋翼视为一个整体,考虑其动态入流、尾迹影响以及旋翼与机身之间的相互耦合等。就单片桨叶而言,在结构动力学上,需要考虑离心力场、几何非线性以及桨叶的非线性挥舞-摆振-扭转耦合;在气动力上,需要考虑动态入流以及桨尖处可能的失速效应,本质上属于非线性气动弹性力学范畴。由于旋翼气动力通常是以周期形式通过旋翼轴传给机身,并引起机身振动,而机身运动又通过改变桨叶根部形态反过来影响旋翼的气动弹性特性,这种旋翼/机身耦合问题,也是近年来直升机气动弹性问题研究中的重要方向和热点之一。此外,随着旋翼流场数值分析方法的日趋成熟,采用动态重叠网格或滑移网格方法来实现桨叶运动,并通过动网格技术来实现桨叶的弹性变形,从而实现弹性旋翼流场的数值模拟,目前正呈现出勃勃生机,成为直升机气动弹性研究的又一重要方向和热点。随着各种新构型直升机的相继出现,如倾转旋翼机、前行桨叶概念旋翼(ABC)直升机和复合式直升机等,也带来了新的气动弹性问题。不断发现问题、解决问题,推动本学科持续发展,永远是气动弹性工作者终身奋斗的目标。  相似文献   
945.
采用Gleeble热模拟机进行热压缩实验,研究7150铝合金在变形温度为300~450℃、应变速率为0.01~10s-1条件下的变形行为,采用Zener-Hollomon参数法构建合金高温塑性变形本构方程,并对变形后的微观组织进行分析。研究表明:7150铝合金的流变应力随应变速率增大而增大,随变形温度增大而降低。该合金热压缩变形的流变应力行为可用双曲正弦形式的本构方程描述,其参数A为4.161×1014s-1,α为0.01956 MPa-1,n为5.14336,热变形激活能Q为229.7531k J/mol。随着温度升高和应变速率降低,动态再结晶逐渐取代动态回复成为合金的主要软化机制。  相似文献   
946.
罗磊  陈朔  温风波  王松涛 《推进技术》2015,36(6):864-875
为进行燃气涡轮冷却结构的设计,在考虑总的温度分布系数(OTDF)及不考虑OTDF两种情况下,采用一套设计方法,完成了燃气涡轮第一级动叶冷却结构的整体设计。通过设计表明:采用管网计算,并通过三维导热计算进行热分析,最后通过气热耦合计算能够快速地设计出较佳的冷却结构;不考虑OTDF设计时,第一腔流量为16.9g/s,第二腔流量为40.8g/s,最大无量纲温度0.700,采用双进口蛇形通道,换热效果较佳,且结构设计较为简单;考虑OTDF时,为达到设计要求,第一腔流量为18.2g/s,第二腔流量为25.4g/s,第三腔流量为5.3g/s,最大无量纲温度0.752。通过多方案设计,得出在无气膜情况下,采用三个冷气进口多回转通道能够达到较好的冷却效果。  相似文献   
947.
复合材料副翼典型结构件的VARI工艺模拟及试验验证   总被引:1,自引:0,他引:1  
在复合材料液体成型工艺过程中,通过计算机软件的模拟研究,可以预先判断树脂在增强体中的流动形式和获得树脂的注模时间以及注模压力,进而为实际成型工艺提供参考设计。本文利用PAM-RTM模拟软件对复合材料副翼典型结构件的树脂流动过程进行了模拟计算。根据达西定律推导出树脂在增强纤维中一维流动渗透率计算公式,分别对增强纤维、缝线纤维进行了渗透率测试,在此基础上对渗透率数值进行了修正。利用渗透率修正值采用不同的流道设计方案对树脂注模过程进行了模拟研究,根据模拟结果最终选择合理的注射方式和流道布局。对所选方案进行了工艺试验验证,并对结构件进行了超声无损检测。结果显示:理论充模时间和试验充模时间基本一致,结构件没有内部缺陷,树脂填充完全,模拟工艺计算有效。  相似文献   
948.
针对某向心涡轮,采用二维流动分析方法设计矩形截面蜗壳,同时采用商用计算流体动力学软件CFX对带蜗壳的向心涡轮流动损失进行数值计算.将计算结果与原型设计中带有集气室的向心涡轮计算结果进行对比.结果表明:蜗壳内流动损失要小于集气室内的流动损失,向心涡轮采用蜗壳后流道内流场有明显改善,效率有所提高.采用设计的矩形截面蜗壳,向心涡轮的功率提高1.7%.通过内部流场的分析,揭示了内部流场结构和损失机理,为向心涡轮的设计和优化提供了一定的参考.   相似文献   
949.
采用数值模拟方法研究了超高负荷涡轮叶栅叶顶间隙流动特征,详细分析了泄漏涡、叶顶分离涡、上通道涡等的流动细节,在此基础上分析间隙高度对流场特征和叶片负荷的影响.结果表明:超高负荷涡轮叶栅叶顶间隙区域存在多种形式的流动分离,泄漏流非常强烈,不仅直接影响上通道涡的形成与发展,使通道涡整体向叶根移动,而且部分泄漏流进入下通道涡;随着间隙高度增加,叶顶分离涡和泄漏涡均明显增强,叶片负荷尤其是叶顶负荷有所降低.   相似文献   
950.
考虑泄漏间隙有压流体作用的指尖密封瞬态性能分析   总被引:1,自引:1,他引:1  
针对已有指尖密封性能分析工作中未考虑泄漏间隙有压流体作用使得指尖密封的理论分析与工程实际有较明显差距的问题,建立了考虑泄漏间隙中有压流体作用的指尖密封性能分析模型,对是否考虑泄漏间隙中有压流体作用的指尖密封性能差异进行了比较分析.研究结果表明:指尖密封性能分析工作需要考虑泄漏间隙有压流体的作用.考虑泄漏间隙有压流体作用指尖密封的泄漏率较不考虑有压流体作用的泄漏率最大增加了234.7%,且有压流体作用使指尖密封泄漏率随转速增加的趋势更加显著.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号