首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1435篇
  免费   387篇
  国内免费   264篇
航空   1204篇
航天技术   270篇
综合类   143篇
航天   469篇
  2024年   8篇
  2023年   21篇
  2022年   69篇
  2021年   75篇
  2020年   87篇
  2019年   62篇
  2018年   93篇
  2017年   112篇
  2016年   85篇
  2015年   78篇
  2014年   102篇
  2013年   104篇
  2012年   114篇
  2011年   118篇
  2010年   113篇
  2009年   118篇
  2008年   95篇
  2007年   108篇
  2006年   122篇
  2005年   86篇
  2004年   47篇
  2003年   44篇
  2002年   57篇
  2001年   46篇
  2000年   24篇
  1999年   32篇
  1998年   14篇
  1997年   13篇
  1996年   8篇
  1995年   7篇
  1994年   4篇
  1992年   1篇
  1991年   5篇
  1990年   3篇
  1989年   4篇
  1988年   4篇
  1987年   2篇
  1900年   1篇
排序方式: 共有2086条查询结果,搜索用时 46 毫秒
981.
基于模糊理论提出一种非线性卫星动量轮灵敏性变异分析的数值方法,以工程实际中的模糊相似关系转化为空间向量的模糊等价关系,来评估稳定系统的总体变异本质特征.并通过仿真均匀分布、线性分布以及周期分布的时间数据序列验证了该模型的可行性;以3套卫星动量轮实际稳态运转实验见证了该方法的实用性和有效性.其中动量轮A的最小灵敏系数为0.678,大于0.5阈值,表明其运转期间灵敏性十分良好;动量轮B的最小灵敏系数为0.439,小于0.5阈值,其运转期间灵敏性有所变异;动量轮C的最小灵敏系数等于0.5阈值,其关系最为模糊并介于稳定与变异之间.该模型实时预测并描述了动量轮灵敏性变异过程,且适用于诸多航天领域的非线性乏信息问题.   相似文献   
982.
张磊  张百灵  苌磊  李益文  段朋振 《推进技术》2017,38(9):2152-2160
为了揭示螺旋波等离子体推力器中的等离子体源功率耦合机理,针对气体工质电离后被射频加热的稳态过程,考虑等离子体密度非均匀分布条件,采用三参数压力函数(fa,sp,tp)和温度函数(f_a,s_t,t_t)表示柱状等离子体内压力和温度的径向分布,分析了径向压力梯度、温度梯度对螺旋波等离子体内功率沉积、波电场、波磁场和电流密度的影响。考虑梯度为正,梯度为负和梯度为零三种梯度类型。结果发现:压力梯度为正时,螺旋波在等离子体临近壁面处的功率沉积减弱,但射频波透入深度增加,原因是靠近管壁处等离子体密度较低,RF波径向单位长度衰减较少,透入深度增加。温度梯度为负时,柱状等离子体中心处能量沉积变强,原因是管中心位置等离子体密度较大,电子温度较高,与RF波能量耦合增强;横向截面的电磁场、电流密度分布在不同压力和温度梯度下基本不变,证明了m=1模式的稳定性。  相似文献   
983.
为提高低展弦比涡轮叶片气动与换热性能,抑制叶栅二次损失并降低端壁换热水平,提出了一种基于参数化脊线的非轴对称端壁成型方法。非轴对称端壁参数化成型基于位于叶片压力侧的脊线及周向余弦曲线构成,预先保证了端壁压力侧较高、吸力侧较低的基本形状。以涡轮叶栅出口测量截面质量平均二次动能系数最小及端壁面积平均换热系数最小为优化目标,采用NSGA-Ⅱ多目标遗传算法进行气动与换热优化,得到非轴对称端壁造型。优化结果表明:与平端壁相比,非轴对称端壁涡轮叶栅出口测量截面的质量平均二次动能系数降低了27%,端壁面积平均换热系数降低了6.9%。非轴对称端壁造型通过平衡叶片间横向压力梯度,改变了马蹄涡与通道涡位置,通道涡和壁涡强度得到抑制,有效降低了涡轮叶栅二次损失及端壁换热。  相似文献   
984.
彭刚  朱彬  张大义  洪杰 《航空动力学报》2017,32(7):1728-1735
针对高涵道比涡扇发动机结构设计需求,提出转子系统、承力系统和整机的结构效率评估参数,建立了结构设计参数与力学特征参数之间的联系。典型发动机评估结果表明:受大尺寸风扇限制,高涵道比涡扇发动机低压转子系统的平均应力系数在0.2~0.3之间,低于其他类型的航空燃气涡轮发动机。在工作转速范围内,低压转子不可避免地存在弯曲型临界转速,须将转子连接结构设计在低应变能区域。机动飞行中,整机的转静间隙值变化范围为[-1.4,1.0]mm,低压涡轮是间隙控制的重点位置。   相似文献   
985.
固体火箭发动机碳基材料喷管机械侵蚀特性   总被引:1,自引:2,他引:1  
为研究碳基材料喷管的机械侵蚀特性,基于两相流理论和经验公式,考虑液滴的蒸发与反应,建立了二维轴对称碳基材料喷管机械侵蚀计算模型.针对15-lb BATES发动机喷管进行了机械侵蚀计算,研究了液滴轨迹、机械侵蚀情况的分布规律,以及推进剂中Al质量分数和燃烧室压强对机械侵蚀的影响.结果表明:机械侵蚀率计算最大值为55μm/s,在实验结果范围内.Al/Al2O3混合液滴是机械侵蚀的主要因素,Al液滴由于蒸发氧化而不对壁面造成碰撞.机械侵蚀发生在喷管收敛段,峰值位于喉部上游入口处,喉部和扩张段无机械侵蚀现象.推进剂中Al质量分数增加对机械侵蚀率无显著规律性影响.机械侵蚀率随燃烧室压强的增加呈超线性增长.   相似文献   
986.
作为一架飞机的指挥中心,驾驶舱的重要性是显而易见的。舱内的环境控制尤其是气流组织对飞行员的身体健康和正常工作有很大影响。建立了某型民用飞机的三维驾驶舱模型,做出合理假设和简化后运用流体力学计算软件FLUENT进行了数值模拟,基于PS模型对各种工况进行热舒适性评价。结果表明,总供风量为0.08m3/s,侧面送风占总风量40%且送风方向垂直于送风口的方式为最佳工况,此时驾驶员、观察员周围空气的温度和速度达到人体舒适度要求,模拟结果为驾驶舱气流组织的设计提供了参考。  相似文献   
987.
谢建  谢政  杜文正  常正阳  姚晓光 《推进技术》2018,39(12):2718-2727
为研究水雾对火箭射流压力脉动的抑制效果,以火箭在地下有限空间内发射为研究对象,采用平面波跨介质传播理论分析了水雾对压力脉动的抑制机理和效果。采用计算流体力学方法,考虑水滴破碎和蒸发作用,详细揭示了射流压力脉动与水雾的作用过程,并研究了水雾参数对压力脉动抑制效果的影响规律。数值结果表明,不同水滴直径的水雾对压力脉动有2种不同的抑制机理,当水雾的水滴直径大于0.7mm时,水雾对压力脉动的抑制效率随水滴直径增大而降低;当水滴直径小于0.7mm时,抑制效率受水滴直径变化的影响可以忽略;临界直径的值是压力脉动时间特性的函数。此外,水雾的浓度越高,水雾对射流压力脉动的抑制效果越好;压力脉动抑制效果与水雾层厚度之间呈类似抛物线关系,当水雾层厚度为0.3m时,传递系数不大于0.43,水雾对射流压力脉动有最优的抑制效果。  相似文献   
988.
主燃级旋流数对中心分级燃烧室流场的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
为了研究中心分级燃烧室的流场特性及主燃级旋流器旋流数对中心回流区的影响,采用数值模拟方法对2种不同主燃级旋流数的头部结构下的出口流场开展了对比研究,并进行了试验验证。结果表明:主燃级部分旋流气体与预燃级掺混,参与影响中心回流区的形成;主燃级旋流数的变化对头部流场分布有显著影响。主燃级旋流数减少,使主燃级径向尺寸增加,径向分区明显;使预燃级回流区位置后移,涡心向火焰筒中心靠拢。  相似文献   
989.
为实现航空发动机加力燃烧室的无稳定器燃烧组织,以加力燃烧室燃油在涡轮内提前雾化蒸发特性为研究对象,采用经过试验验证的数值模拟方法,对燃油喷雾在涡轮级内的流动雾化特性及影响因素开展数值分析。在不同来流温度条件下,考察了燃油在静子流道的展向、周向和轴向不同喷入位置的运动轨迹、粒径分布和涡轮出口气态燃油浓度分布。研究结果表明,喷雾位置和来流总温对燃油雾化特性都存在影响,具体表现在:(1)不同展向位置的燃油雾化特性相似;(2)吸力面燃油雾化质量优于压力面;(3)在喉道附近的燃油雾化质量优于叶片前缘和尾缘;(4)在雾化过程中的不同时段,液滴数量的变化是破碎与蒸发的竞争机制影响的结果;(5)提高来流总温可以提高雾化质量。另外,涡轮内非均匀流场中各位置温度与速度对燃油雾化蒸发影响的比重不同,在同一来流总温条件下,速度对燃油雾化的影响大于温度。  相似文献   
990.
低温推进剂加注系统置换介质的相似性分析   总被引:1,自引:2,他引:1       下载免费PDF全文
李亦健  高旭  陈虹  雷刚  金滔 《推进技术》2018,39(3):703-708
为了研究新一代航天推进系统低温推进剂加注系统的气体置换流程特性,采用数值模拟的方法,对置换介质的流动过程进行了模拟和分析,重点考察低温液体增压罐的工作压力、气路调节阀开度对于系统中流动状态和流量及压力调节的影响,并分别以氢、氮作为介质对系统内的流动特性进行计算,分析置换过程中流量调节的氮氢相似性。结果显示,氮气置换系统所得的流量压力调节规律与氢气置换系统在影响因素和变化趋势方面是相似的;但是,在相同的液体储罐增压工作压力和调节阀开度下,氢气系统内的最大流速可达氮气系统内最大流速的5倍,考虑到氢气系统的安全性要求,精确的流量调节策略还需要根据实际氢的置换测试结果来进行确定。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号