首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6749篇
  免费   19篇
  国内免费   19篇
航空   3299篇
航天技术   2371篇
综合类   22篇
航天   1095篇
  2021年   52篇
  2019年   34篇
  2018年   126篇
  2017年   76篇
  2016年   80篇
  2015年   48篇
  2014年   167篇
  2013年   181篇
  2012年   179篇
  2011年   258篇
  2010年   186篇
  2009年   299篇
  2008年   397篇
  2007年   186篇
  2006年   144篇
  2005年   192篇
  2004年   165篇
  2003年   223篇
  2002年   130篇
  2001年   220篇
  2000年   108篇
  1999年   157篇
  1998年   183篇
  1997年   138篇
  1996年   162篇
  1995年   220篇
  1994年   198篇
  1993年   119篇
  1992年   173篇
  1991年   85篇
  1990年   68篇
  1989年   157篇
  1988年   65篇
  1987年   66篇
  1986年   63篇
  1985年   165篇
  1984年   156篇
  1983年   125篇
  1982年   154篇
  1981年   190篇
  1980年   68篇
  1979年   68篇
  1978年   58篇
  1977年   41篇
  1976年   45篇
  1975年   52篇
  1974年   43篇
  1973年   39篇
  1972年   48篇
  1971年   37篇
排序方式: 共有6787条查询结果,搜索用时 15 毫秒
211.
We developed two types of hybrid terminals that can provide both satellite communication and position determination services in one system. One terminal uses the single channel per carrier (SCPC) technique and the other uses the spread spectrum (SS) technique. To evaluate the performance of the two systems, we carried out experiments in Japan and in the Pacific Ocean using two geostationary satellites, ETS-V (150°E) and Inmarsat (180°E). The ranging accuracy between the mobile terminals and the base station via the satellites was found to be about 200 m using the SCPC system and about 10 m using the SS system. The measured positioning accuracy was about 1 km in the SCPC system and about 600 m in the SS system when experiments were carried out near Japan. The experimental results show that the positioning errors were mainly caused by the orbital determination errors of the two satellites. Presented here are the configurations and features of the SCPC and SS terminals, the experimental system, and the experimental results  相似文献   
212.
A simple and fast zero tracking algorithm for adaptive arrays with large look direction errors is presented and investigated. Basically, the algorithm is based on adjusting the complex zeroes of a power inversion array in a time-multiplexed manner to track all the sources in the environment. To preserve the desired signal which is supposed to be closest to the look direction of 0°, the algorithm removes the zero with the shortest distance to ej0 so that the directional response consists of only nulls steered at the jammers. When compared with the least mean square (LMS) algorithm employing zeroth and first-order look direction constraints, the new algorithm has about the same implementation complexity, is considerably faster, and possesses a much better signal-to-noise ratio (SNR) performance when the look direction is erroneous  相似文献   
213.
Adaptive image segmentation using genetic and hybrid search methods   总被引:1,自引:0,他引:1  
This paper describes an adaptive approach for the important image processing problem of image segmentation that relies on learning from experience to adapt and improve the segmentation performance. The adaptive image segmentation system incorporates a feedback loop consisting of a machine learning subsystem, an image segmentation algorithm, and an evaluation component which determines segmentation quality. The machine learning component is based on genetic adaptation and uses (separately) a pure genetic algorithm (GA) and a hybrid of GA and hill climbing (HC). When the learning subsystem is based on pure genetics, the corresponding evaluation component is based on a vector of evaluation criteria. For the hybrid case, the system employs a scalar evaluation measure which is a weighted combination of the different criteria. Experimental results for pure genetic and hybrid search methods are presented using a representative database of outdoor TV imagery. The multiobjective optimization demonstrates the ability of the adaptive image segmentation system to provide high quality segmentation results in a minimal number of generations  相似文献   
214.
Airports are being developed and expanded rapidly in China to accommodate and pro-mote a growing aviation market. The future Beijing Daxing International Airport (DAX) will serve as the central airport of the JingJinJi megaregion, knitting the Beijing, Tianjin, and Hebei regions together. DAX will be a busy airport from its inception, relieving congestion and accommodating growth from Beijing Capital International Airport (PEK), currently the second busiest airport in the world in passengers moved. We aim to model terminal airspace designs and possible conflicts in the future Beijing Multi-Airport System (MAS). We investigate standard arrival procedures and mathematically model current and future arrival trajectories into PEK and DAX by collecting large quantities of publicly available track data from historical arrivals operating within the Beijing terminal airspace. We find that (1) trajectory models constructed from real data capture aberrations and deviations from standard arrival procedures, validating the need to incorporate data on histor-ical trajectories with standard procedures when evaluating the airspace and (2) given all existing constraints, DAX may be restricted to using north and east arrival flows, constraining the capacity required to handle the increases in air traffic demand to Beijing. The results indicate that the termi-nal airspace above Beijing, and the future JingJinJi region, requires careful consideration if the full capacity benefits of the two major airports are to be realized.  相似文献   
215.
The paper presents a technique of forming and evaluating the allowable clearance between a launch vehicle fairing and spacecraft.  相似文献   
216.
The discretization of the boundary value problem for laminated composite shells is based on the finite difference approach using the regular mesh with the constant grid step and the difference operators of the second order of accuracy. The dynamic relaxation method is proposed for the solution of the nonlinear problem. The evolutionary equations of the dynamic relaxation are constructed, and the optimum parameters of the converging linear iterative process are estimated.  相似文献   
217.
The paper studies different types of dampers for rotor supports of gas turbine engines (GTE). The advantages of hydrodynamic dampers are shown. Hydrodynamic dampers for GTE rotor supports are studied. A new design and technique of calculation are proposed for an adjustable hydrodynamic damper.  相似文献   
218.
The surfaces of the Solar System’s icy satellites show an extraordinary variety of morphological features, which bear witness to exchange processes between the surface and subsurface. In this paper we review the characteristics of surface features on the moons of Jupiter, Saturn, Uranus and Neptune. Using data from spacecraft missions, we discuss the detailed morphology, size, and topography of cryovolcanic, tectonic, aeolian, fluvial, and impact features of both large moons and smaller satellites.  相似文献   
219.
The magnetospheric imaging instrument (MIMI) is a neutral and charged particle detection system on the Cassini orbiter spacecraft designed to perform both global imaging and in-situ measurements to study the overall configuration and dynamics of Saturn’s magnetosphere and its interactions with the solar wind, Saturn’s atmosphere, Titan, and the icy satellites. The processes responsible for Saturn’s aurora will be investigated; a search will be performed for substorms at Saturn; and the origins of magnetospheric hot plasmas will be determined. Further, the Jovian magnetosphere and Io torus will be imaged during Jupiter flyby. The investigative approach is twofold. (1) Perform remote sensing of the magnetospheric energetic (E > 7 keV) ion plasmas by detecting and imaging charge-exchange neutrals, created when magnetospheric ions capture electrons from ambient neutral gas. Such escaping neutrals were detected by the Voyager l spacecraft outside Saturn’s magnetosphere and can be used like photons to form images of the emitting regions, as has been demonstrated at Earth. (2) Determine through in-situ measurements the 3-D particle distribution functions including ion composition and charge states (E > 3 keV/e). The combination of in-situ measurements with global images, together with analysis and interpretation techniques that include direct “forward modeling’’ and deconvolution by tomography, is expected to yield a global assessment of magnetospheric structure and dynamics, including (a) magnetospheric ring currents and hot plasma populations, (b) magnetic field distortions, (c) electric field configuration, (d) particle injection boundaries associated with magnetic storms and substorms, and (e) the connection of the magnetosphere to ionospheric altitudes. Titan and its torus will stand out in energetic neutral images throughout the Cassini orbit, and thus serve as a continuous remote probe of ion flux variations near 20R S (e.g., magnetopause crossings and substorm plasma injections). The Titan exosphere and its cometary interaction with magnetospheric plasmas will be imaged in detail on each flyby. The three principal sensors of MIMI consists of an ion and neutral camera (INCA), a charge–energy–mass-spectrometer (CHEMS) essentially identical to our instrument flown on the ISTP/Geotail spacecraft, and the low energy magnetospheric measurements system (LEMMS), an advanced design of one of our sensors flown on the Galileo spacecraft. The INCA head is a large geometry factor (G ∼ 2.4 cm2 sr) foil time-of-flight (TOF) camera that separately registers the incident direction of either energetic neutral atoms (ENA) or ion species (≥5 full width half maximum) over the range 7 keV/nuc < E < 3 MeV/nuc. CHEMS uses electrostatic deflection, TOF, and energy measurement to determine ion energy, charge state, mass, and 3-D anisotropy in the range 3 ≤ E ≤ 220 keV/e with good (∼0.05 cm2 sr) sensitivity. LEMMS is a two-ended telescope that measures ions in the range 0.03 ≤ E ≤ 18 MeV and electrons 0.015 ≤ E≤ 0.884 MeV in the forward direction (G ∼ 0.02 cm2 sr), while high energy electrons (0.1–5 MeV) and ions (1.6–160 MeV) are measured from the back direction (G ∼ 0.4 cm2 sr). The latter are relevant to inner magnetosphere studies of diffusion processes and satellite microsignatures as well as cosmic ray albedo neutron decay (CRAND). Our analyses of Voyager energetic neutral particle and Lyman-α measurements show that INCA will provide statistically significant global magnetospheric images from a distance of ∼60 R S every 2–3 h (every ∼10 min from ∼20 R S). Moreover, during Titan flybys, INCA will provide images of the interaction of the Titan exosphere with the Saturn magnetosphere every 1.5 min. Time resolution for charged particle measurements can be < 0.1 s, which is more than adequate for microsignature studies. Data obtained during Venus-2 flyby and Earth swingby in June and August 1999, respectively, and Jupiter flyby in December 2000 to January 2001 show that the instrument is performing well, has made important and heretofore unobtainable measurements in interplanetary space at Jupiter, and will likely obtain high-quality data throughout each orbit of the Cassini mission at Saturn. Sample data from each of the three sensors during the August 18 Earth swingby are shown, including the first ENA image of part of the ring current obtained by an instrument specifically designed for this purpose. Similarily, measurements in cis-Jovian space include the first detailed charge state determination of Iogenic ions and several ENA images of that planet’s magnetosphere.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
220.
Performance evaluation for MAP state estimate fusion   总被引:1,自引:0,他引:1  
This paper presents a quantitative performance evaluation method for the maximum a posteriori (MAP) state estimate fusion algorithm. Under ideal conditions where data association is assumed to be perfect, it has been shown that the MAP or best linear unbiased estimate (BLUE) fusion formula provides the best linear minimum mean squared estimate (LMMSE) given local estimates under the linear Gaussian assumption for a static system. However, for a dynamic system where fusion is recursively performed by the fusion center on local estimates generated from local measurements, it is not obvious how the MAP algorithm will perform. In the past, several performance evaluation methods have been proposed for various fusion algorithms, including simple convex combination, cross-covariance combination, information matrix, and MAP fusion. However, not much has been done to quantify the steady state behavior of these fusion methods for a dynamic system. The goal of this work is to present analytical fusion performance results for MAP state estimate fusion without extensive Monte Carlo simulations, using an approach developed for steady state performance evaluation for track fusion. Two different communication strategies are considered: fusion with and without feedback to the sensors. Analytic curves for the steady state performance of the fusion algorithm for various communication patterns are presented under different operating conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号