首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7754篇
  免费   11篇
  国内免费   37篇
航空   3774篇
航天技术   2754篇
综合类   26篇
航天   1248篇
  2019年   44篇
  2018年   99篇
  2017年   64篇
  2016年   60篇
  2014年   137篇
  2013年   188篇
  2012年   166篇
  2011年   266篇
  2010年   199篇
  2009年   288篇
  2008年   390篇
  2007年   196篇
  2006年   157篇
  2005年   221篇
  2004年   214篇
  2003年   253篇
  2002年   151篇
  2001年   239篇
  2000年   132篇
  1999年   199篇
  1998年   222篇
  1997年   154篇
  1996年   190篇
  1995年   239篇
  1994年   247篇
  1993年   148篇
  1992年   191篇
  1991年   91篇
  1990年   92篇
  1989年   187篇
  1988年   80篇
  1987年   73篇
  1986年   82篇
  1985年   262篇
  1984年   212篇
  1983年   169篇
  1982年   173篇
  1981年   276篇
  1980年   85篇
  1979年   83篇
  1978年   78篇
  1977年   64篇
  1976年   57篇
  1975年   84篇
  1974年   64篇
  1973年   62篇
  1972年   83篇
  1971年   48篇
  1970年   49篇
  1969年   54篇
排序方式: 共有7802条查询结果,搜索用时 15 毫秒
391.
Subcritical and supercritical water oxidation of CELSS model wastes.   总被引:1,自引:0,他引:1  
Controlled-Ecological-Life-Support-System (CELSS) model wastes were wet-oxidized at temperatures from 250 to 500 degrees C, i.e., below and above the critical point of water (374 degrees C and 218 kg/cm2 or 21.4 MPa). A solution of ammonium hydroxide and acetic acid and a slurry of human urine, feces, and wipes were used as model wastes. Almost all of the organic matter in the model wastes was oxidized in the temperature range from 400 to 500 degrees C, i.e., above the critical conditions for water. In contrast, only a small portion of the organic matter was oxidized at subcritical conditions. Although the extent of nitrogen oxidation to nitrous oxide (N2O) and/or nitrogen gas (N2) increased with reaction temperature, most of the nitrogen was retained in solution as ammonia near 400 degrees C. This important finding suggests that most of the nitrogen in the waste feed can be retained in solution as ammonia during oxidation at low supercritical temperatures and be subsequently used as a nitrogen source for plants in a CELSS while at the same time organic matter is almost completely oxidized to carbon dioxide and water. It was also found in this study the Hastelloy C-276 alloy reactor corroded during waste oxidation. The rate of corrosion was lower above than below the critical temperature for water.  相似文献   
392.
Sharp (<10 min) and large (>20%) solar wind ion flux changes are common phenomena in turbulent solar wind plasma. These changes are the boundaries of small- and middle-scale solar wind plasma structures which can have a significant influence on Earth’s magnetosphere. These solar wind ion flux changes are typically accompanied by only a small change in the bulk solar wind velocity, hence, the flux changes are driven mainly by plasma density variations. We show that these events occur more frequently in high-density solar wind. A characteristic of solar wind turbulence, intermittency, is determined for time periods with and without these flux changes. The probability distribution functions (PDF) of solar wind ion flux variations for different time scales are calculated for each of these periods and compared. For large time scales, the PDFs are Gaussian for both data sets. For small time scales, the PDFs from both data set are more flat than Gaussian, but the degree of flatness is much larger for the data near the sharp flux change boundaries.  相似文献   
393.
The response of spores of Bacillus subtilis, cells of Deinococcus radiodurans and conidia of Aspergillus ochraceus to actual and simulated space conditions (UV in combination with long-term exposure to extremely dry conditions, including vacuum) has been studied: The following effects have been analyzed: decrease of viability, occurrence of DNA double strand breaks, formation of DNA-protein cross-links and DNA-DNA cross-links. All organisms show an increased sensitivity to UV light in extreme dryness (dry argon or vacuum) compared to an irradiation in aqueous suspension. The UV irradiation leads in all cases to a variety of DNA lesions. Very conspicuous is the occurrence of double strand breaks. Most of these double strand breaks are produced by incomplete repair of other lesions, especially base damages. The increase in DNA lesions can be correlated to the loss in viability. The specific response of the chromosomal DNA to UV irradiation in extreme dryness, however, varies from species to species and depends on the state of dehydration. The formation of DNA double strand breaks and DNA-protein cross-links prevails in the case of B. subtilis spores. In cells of Deinococcus radiodurans DNA-DNA cross-links often predominate, in conidia of Aspergillus ochraceus double strand breaks. The results obtained by direct exposure to space conditions (EURECA mission and D2 mission) largely agree with the laboratory data.  相似文献   
394.
Nuclear track detectors were used to measure the integral Linear Energy Transfer (LET) spectra above 1 GeV per cm water behind the complex material shielding inside a spacecraft. The measurements are compared with predictions of the contribution of high charge, high energy HZE particles of the galactic cosmic radiation taking into account the influence of solar and geomagnetic modulation and shielding by matter.  相似文献   
395.
This overview deals with very high impact velocities, where complete vaporization of an impacting cosmic dust particle is to be expected upon expansion from the high pressure high temperature state behind the stopping shock (v > 15 km/s). The topics discussed are the mechanics and thermodynamics of compression, adiabatic release, equation of state and nonequilibrium states upon expansion. The case of very high particle porosity (ρ 1 g/cm3) and the case of very small dust masses (m < 10−17 g) are discussed from what one presently knows. The possibility of three body collisions in the expanding gas phase is discussed briefly. The effect of oblique impact is discussed with respect to its relevance to the ionization process. The numbers communicated are up to the highest “experimental” impact velocities (80 km/s, Halley mission). As one goes to lower impact velocities (20 < v < 30 km/s) there is still complete vaporization of the dust particle but ionization out of the bulk of the particle becomes low. Other than thermal processes may become important. Ideas are outlined to understand their physical nature.  相似文献   
396.
The Spacelab-Mir-1 (SLM-1) mission is the first docking of the Space Shuttle Atlantis (STS-71) with the Orbital Station Mir in June 1995. The SLM-1 "Greenhouse-2" experiment will utilize the Russian-Bulgarian-developed plant growth unit (Svet). "Greenhouse-2" will include two plantings (1) designed to test the capability of Svet to grow a crop of Superdwarf wheat from seed to seed, and (2) to provide green plant material for post-flight analysis. Protocols, procedures, and equipment for the experiment have been developed by the US-Russian science team. "Greenhouse-2" will also provide the first orbital test of a new Svet Instrumentation System (SIS) developed by Utah State University to provide near real time data on plant environmental parameters and gas-exchange rates. SIS supplements the Svet control and monitoring system with additional sensors for substrate moisture, air temperature, IR leaf temperature, light, oxygen, pressure, humidity, and carbon-dioxide. SIS provides the capability to monitor canopy transpiration and net assimilation of the plants growing in each vegetation unit (root zone) by enclosing the canopy in separate, retractable, ventilated leaf chambers. Six times during the seed-to-seed experiment, plant samples will be collected, leaf area measured, and plant parts fixed and/or dried for ground analysis. A second planting initiated 30 days before the arrival of a U.S. Shuttle [originally planned to be STS-71] is designed to provide green material at the vegetative development stage for ground analysis. [As this paper is being edited, the experiment has been delayed until after the arrival of STS-71.]  相似文献   
397.
398.
We present here the energy spectra relative to different geomagnetic regions as measured by the ALTEA (Anomalous Long Term Effects on Astronauts) detector in the International Space Station – USLab from August 2006 to July 2007.  相似文献   
399.
Radio bursts with fine structures in decimetric–centimetric wave range are generally believed to manifest the primary energy release process during flare/CME events. By spectropolarimeters in 1–2 GHz, 2.6–3.8 GHz, and 5.2–7.6 GHz at NAOC/Huairou with very high temporal (1.25–8 ms) and spectral (4–20 MHz) resolutions, the zebra patterns, spikes, and new types of radio fine structures with mixed frequency drift features are observed during several significant flare/CME events. In this paper we will discuss the occurrence of radio fine structures during the impulsive phase of flares and/or CME initiations, which may be connected to the magnetic reconnection processes.  相似文献   
400.
Halophilic archaea are of interest to astrobiology due to their survival capabilities in desiccated and high salt environments. The detection of remnants of salty pools on Mars stimulated investigations into the response of haloarchaea to martian conditions. Natronorubrum sp. strain HG-1 is an extremely halophilic archaeon with unusual metabolic pathways, growing on acetate and stimulated by tetrathionate. We exposed Natronorubrum strain HG-1 to ultraviolet (UV) radiation, similar to levels currently prevalent on Mars. In addition, the effects of low temperature (4, −20, and −80 °C), desiccation, and exposure to a Mars soil analogue from the Atacama desert on the viability of Natronorubrum strain HG-1 cultures were investigated. The results show that Natronorubrum strain HG-1 cannot survive for more than several hours when exposed to UV radiation equivalent to that at the martian equator. Even when protected from UV radiation, viability is impaired by a combination of desiccation and low temperature. Desiccating Natronorubrum strain HG-1 cells when mixed with a Mars soil analogue impaired growth of the culture to below the detection limit. Overall, we conclude that Natronorubrum strain HG-1 cannot survive the environment currently present on Mars. Since other halophilic microorganisms were reported to survive simulated martian conditions, our results imply that survival capabilities are not necessarily shared between phylogenetically related species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号