全文获取类型
收费全文 | 3920篇 |
免费 | 10篇 |
国内免费 | 13篇 |
专业分类
航空 | 1929篇 |
航天技术 | 1374篇 |
综合类 | 11篇 |
航天 | 629篇 |
出版年
2021年 | 34篇 |
2019年 | 24篇 |
2018年 | 64篇 |
2017年 | 34篇 |
2016年 | 34篇 |
2014年 | 81篇 |
2013年 | 113篇 |
2012年 | 93篇 |
2011年 | 140篇 |
2010年 | 112篇 |
2009年 | 163篇 |
2008年 | 223篇 |
2007年 | 103篇 |
2006年 | 76篇 |
2005年 | 102篇 |
2004年 | 93篇 |
2003年 | 125篇 |
2002年 | 71篇 |
2001年 | 121篇 |
2000年 | 61篇 |
1999年 | 88篇 |
1998年 | 118篇 |
1997年 | 80篇 |
1996年 | 106篇 |
1995年 | 134篇 |
1994年 | 119篇 |
1993年 | 74篇 |
1992年 | 113篇 |
1991年 | 46篇 |
1990年 | 38篇 |
1989年 | 98篇 |
1988年 | 38篇 |
1987年 | 37篇 |
1986年 | 35篇 |
1985年 | 112篇 |
1984年 | 106篇 |
1983年 | 67篇 |
1982年 | 91篇 |
1981年 | 107篇 |
1980年 | 39篇 |
1979年 | 45篇 |
1978年 | 35篇 |
1977年 | 23篇 |
1976年 | 25篇 |
1975年 | 43篇 |
1974年 | 32篇 |
1972年 | 37篇 |
1968年 | 21篇 |
1967年 | 23篇 |
1966年 | 21篇 |
排序方式: 共有3943条查询结果,搜索用时 0 毫秒
61.
Klumpar D.M. Möbius E. Kistler L.M. Popecki M. Hertzberg E. Crocker K. Granoff M. Tang Li Carlson C.W. McFadden J. Klecker B. Eberl F. Künneth E. Kästle H. Ertl M. Peterson W.K. Shelly E.G. Hovestadt D. 《Space Science Reviews》2001,98(1-2):197-219
The Time-of-flight Energy Angle Mass Spectrograph (TEAMS) is being flown on the FAST Small Explorer mission to measure the 3-dimensional distribution function of the major ion species present in the lower magnetosphere. The instrument is similar to time-of-flight plasma analyzer systems that have been designed and planned for flight as CODIF (COmposition and DIstribution Function analyzer) on the four European Space Agency Cluster-II spacecraft and, as ESIC (Equator-S Ion Composition instrument) on Equator-S. This instrument allows the 3-dimensional distribution functions of individual ion species to be determined within
spin period (2.5 s). Two-dimensional distributions are measured in 80 ms. These capabilities are crucial for the study of selective energization processes in the auroral regions of the magnetosphere. The design, operational characteristics, and test and calibration results for this instrument are presented. The sensor consists of a toroidal top-hat electrostatic analyzer with instantaneous acceptance of ions over 360° in polar angle. After post-acceleration of the incoming ions by up to 25 kV, a time-of-flight mass spectrograph discriminates the individual species. It has been demonstrated through calibration that the instrument can easily separate H+, He2+, He+, O+ and, for energies after post-acceleration of > 20 keV, even O2
+ molecules. On-board mass discrimination and the internal accumulation of several distinct data quantities combined with the spacecraft's flexible telemetry formatting allow for instrument data rates from 7.8 kb s–1 to 315 kb s–1 to be telemetered to ground through the FAST centralized Instrument Data Processor. 相似文献
62.
We have performed a joint survey of anisotropic ≳40 keV electron events from August 1997 to September 2000 using the matched
detectors on the Ulysses (ULS)/HI-SCALE and the ACE/EPAM instruments. A computer algorithm selected events with strong, statistically significant
pitch-angle anisotropies. Electron pitch-angle distributions at ACE (∼1 AU) are often ‘beams’ that are strongly collimated
along the local interplanetary magnetic field (IMF). These flare-associated impulsive injections can display rapid rise times
(∼15 min) and slower decays, or more irregular intensity histories. At ULS, the electron intensities are lower and the time
histories smoother, but strong anisotropies are still observable, indicating direct, nearly field-aligned propagation outward
from the Sun. We focus on four event periods, selected from the survey, during times when the angle between the footpoints
of the IMF lines intersecting ACE and ULS is small. These events span three full years and cover a wide range of distances
and heliographic latitudes. We found one reasonably good association between impulsive electron events at ACE and ULS, and
two events with small field-aligned gradients.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
63.
T.E. Moore M.O. Chandler M.-C. Fok B.L. Giles D.C. Delcourt J.L. Horwitz C.J. Pollock 《Space Science Reviews》2001,95(1-2):555-568
The discovery of terrestrial O+ and other heavy ions in magnetospheric hot plasmas, combined with the association of energetic ionospheric outflows with geomagnetic activity, led to the conclusion that increasing geomagnetic activity is responsible for filling the magnetosphere with ionospheric plasma. Recently it has been discovered that a major source of ionospheric heavy ion plasma outflow is responsive to the earliest impact of coronal mass ejecta upon the dayside ionosphere. Thus a large increase in ionospheric outflows begins promptly during the initial phase of geomagnetic storms, and is already present during the main phase development of such storms. We hypothesize that enhancement of the internal source of plasma actually supports the transition from substorm enhancements of aurora to storm-time ring current development in the inner magnetosphere. Other planets known to have ring current-like plasmas also have substantial internal sources of plasma, notably Jupiter and Saturn. One planet having a small magnetosphere, but very little internal source of plasma, is Mercury. Observations suggest that Mercury has substorms, but are ambiguous with regard to the possibility of magnetic storms of the planet. The Messenger mission to Mercury should provide an interesting test of our hypothesis. Mercury should support at most a modest ring current if its internal plasma source is as small as is currently believed. If substantiated, this hypothesis would support a general conclusion that the magnetospheric inflationary response is a characteristic of magnetospheres with substantial internal plasma sources. We quantitatively define this hypothesis and pose it as a problem in comparative magnetospheres. 相似文献
64.
Comparison of two measurement fusion methods forKalman-filter-based multisensor data fusion 总被引:3,自引:0,他引:3
Currently there exist two commonly used measurement fusion methods for Kalman-filter-based multisensor data fusion. The first (Method I) simply merges the multisensor data through the observation vector of the Kalman filter, whereas the second (Method II) combines the multisensor data based on a minimum-mean-square-error criterion. This paper, based on an analysis of the fused state estimate covariances of the two measurement fusion methods, shows that the two measurement fusion methods are functionally equivalent if the sensors used for data fusion, with different and independent noise characteristics, have identical measurement matrices. Also presented are simulation results on state estimation using the two measurement fusion methods, followed by the analysis of the computational advantages of each method 相似文献
65.
A Bayesian network (BN) is a compact representation for probabilistic models and inference. They have been used successfully for many military and civilian applications. It is well known that, in general, the inference algorithms to compute the exact a posterior probability of a target node given observed evidence are either computationally infeasible for dense networks or impossible for general hybrid networks. In those cases, one either computes the approximate results using stochastic simulation methods or approximates the model using discretization or a Gaussian mixture model before applying an exact inference algorithm. This paper combines the concept of simulation and model approximation to propose an efficient algorithm for those cases. The main contribution here is a unified treatment of arbitrary (nonlinear non-Gaussian) hybrid (discrete and continuous) BN inference having both computation and accuracy scalability. The key idea is to precompile the high-dimensional hybrid distribution using a hypercube representation and apply it for both static and dynamic BN inference. Since the inference process essentially becomes a combination of table look-up and some simple operations, the method is shown to be extremely efficient. It can also he scaled to achieve any desirable accuracy given sufficient preprocessing time and memory for the cases where exact inference is not possible 相似文献
66.
Rice M. Oliphant T. Haddadin O. McIntire W. 《IEEE transactions on aerospace and electronic systems》2007,43(4):1484-1495
This paper describes data-aided signal level and noise variance estimators for Gaussian minimum shift keying (GMSK) when the observations are limited to the output of a filter matched to the first pulse-amplitude modulation (PAM) pulse in the equivalent PAM representation. The estimators are based on the maximum likelihood (ML) principle and assume burst-mode transmission with known timing and a block of L0 known bits. While it is well known that ML estimators are asymptotically unbiased and efficient, the analysis quantifies the rate at which the estimators approach these asymptotic properties. It is shown that the carrier phase, amplitude, and noise variance estimators are unbiased and can achieve their corresponding Cramer-Rao bounds with modest combinations of signal-to-noise ratio and observation length. The estimates are used to estimate the signal-to-noise ratio. It is shown that the mean squared error performance of the ratio increases with signal-to-noise ratio while the mean squared error performance of the ratio in decibels decreases with signal-to-noise ratio. Simulation results are provided to confirm the accuracy of the analytic results. 相似文献
67.
Liu S. Singer C.H. Dougal R.A. 《IEEE transactions on aerospace and electronic systems》2006,42(2):612-624
Electric power anomalies or disturbances can disrupt the normal operation of equipment, accelerate aging, or even cause outright failures thus resulting in increased costs of maintenance and reduced system reliability. Past research on the effects caused by power anomalies has been mostly focused on industrial, commercial, or residential systems, or on power distribution equipment. A literature survey reveals that there is no comprehensive review related to low-voltage (LV) power systems and utilization equipment applicable to military combat vehicles, such as aircraft and ships. This paper summarizes the results of a new literature survey that focused on the causes, effects, and mitigation methods for power anomalies typical of LV mobile power systems. Electric power anomaly cost data collected from the literature are also presented, from which the costs of anomalies to the national defense are estimated using some simple rationales. 相似文献
68.
B. Rizk C. Drouet dAubigny C.W. Hergenrother B.J. Bos D.R. Golish R. Malhotra D.S. Lauretta J. Butt J. Patel M. Fitzgibbon C. May E.B. Bierhaus S. Freund M. Fisher S. Cambioni C.A. Bennett S.S. Balram-Knutson K. Harshman M. Moreau 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2019,63(1):672-691
We analyzed high-angular rate streaks first recorded by OSIRIS-REx’s MapCam during a 2017 search for Earth Trojan asteroids. We interpret them as water-ice particles that translated across the imager’s field of view, originating from the spacecraft itself. Their translation velocities approximated 0.1–1?m/s based on reasonable conclusions about their range. Pursuing several lines of investigation to seek a coherent hypothesis, we conclude that the episodic releases of the water ice particles are associated with spacecraft attitudes that resulted in solar illumination of previously shadowed regions. This correlation suggests that the OSIRIS-REx spacecraft itself possesses micro-climatic zones consisting of hot regions and cold traps that may temporarily potentially pass volatiles back and forth before losing most of them. 相似文献
69.
Earth and Mars observation using periodic orbits 总被引:1,自引:0,他引:1
E. Ortore C. Circi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012,49(1):185-195
This paper reports the results of a general study carried out on the Periodic Multi-SunSynchronous Orbits (PMSSOs), which the classical Periodic SunSynchronous Orbits (PSSOs) represent a specific solution of. Such orbits allow to obtain cycles of observation of the same region in which the solar illumination regularly varies according to the value of the orbit elements and comes back to the initial condition after a time interval which is multiple of the revisit time. Therefore this kind of orbits meets all the remote sensing applications that need observations of the same area at different local times (for example the reconstruction of the day-nighttime trend of the surface temperature of the planet) and it is particularly suitable to the study of several terrestrial and martian phenomena (diurnal cycle of the hazes and clouds, dynamics of the thermal tides, density variations, meteorology phenomena, etc.). The design of PMSSO is based on the variation of the Right Ascension of the Ascending Node due to the Earth oblateness (referred as basic solution). However, with respect to the basic solution, the analysis of the perturbative effects has demonstrated the need, especially in the case of Mars, to take into account all the superior harmonics of the gravitational field. To this end a corrective factor, to add to the basic equations, has been proposed, allowing a significant saving of propellant (of the order of 2 km/s per year). Besides, single and multi-plane satellite constellations have been taken into account in order to improve the repetition of observation and the ground spatial resolution. 相似文献
70.
C.J. Hailey T. Aramaki S.E. Boggs P.v. Doetinchem H. Fuke F. Gahbauer J.E. Koglin N. Madden S.A.I. Mognet R. Ong T. Yoshida T. Zhang J.A. Zweerink 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
The General Antiparticle Spectrometer (GAPS) is a new approach to the indirect detection of dark matter. It relies on searching for primary antideuterons produced in the annihilation of dark matter in the galactic halo. Low energy antideuterons produced through Standard Model processes, such as collisions of cosmic-rays with interstellar baryons, are greatly suppressed compared to primary antideuterons. Thus a low energy antideuteron search provides a clean signature of dark matter. In GAPS antiparticles are slowed down and captured in target atoms. The resultant exotic atom deexcites with the emission of X-rays and annihilation pions, protons and other particles. A tracking geometry allows for the detection of the X-rays and particles, providing a unique signature to identify the mass of the antiparticle. A prototype detector was successfully tested at the KEK accelerator in 2005, and a prototype GAPS balloon flight is scheduled for 2011. This will be followed by a full scale experiment on a long duration balloon from Antarctica in 2014. We discuss the status and future plans for GAPS. 相似文献