首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7271篇
  免费   18篇
  国内免费   17篇
航空   3852篇
航天技术   2499篇
综合类   31篇
航天   924篇
  2021年   38篇
  2019年   41篇
  2018年   76篇
  2014年   117篇
  2013年   170篇
  2012年   136篇
  2011年   222篇
  2010年   161篇
  2009年   242篇
  2008年   333篇
  2007年   183篇
  2006年   174篇
  2005年   187篇
  2004年   157篇
  2003年   234篇
  2002年   129篇
  2001年   224篇
  2000年   137篇
  1999年   196篇
  1998年   216篇
  1997年   166篇
  1996年   220篇
  1995年   283篇
  1994年   242篇
  1993年   161篇
  1992年   188篇
  1991年   104篇
  1990年   89篇
  1989年   197篇
  1988年   82篇
  1987年   84篇
  1986年   79篇
  1985年   247篇
  1984年   207篇
  1983年   162篇
  1982年   172篇
  1981年   227篇
  1980年   84篇
  1979年   68篇
  1978年   72篇
  1977年   63篇
  1976年   54篇
  1975年   84篇
  1974年   59篇
  1973年   56篇
  1972年   71篇
  1971年   54篇
  1970年   54篇
  1969年   47篇
  1967年   41篇
排序方式: 共有7306条查询结果,搜索用时 15 毫秒
961.
The paper by Koc and Chen (1994) includes new formulas for computational complexity, but the method itself is already known and has dubious numerical stability. A poorly conditioned example is shown  相似文献   
962.
The results are presented of a comparative study evaluating the performance of neural network (NN) and fuzzy logic reconstructors (FLRs) for the development of a virtual flight data recorder (VFDK). Typical flight data recorders (FDRS) on commercial airliners do not record the aircraft control surface deflections. These dynamic parameters are critical in the investigation of an accident or an uncommanded maneuver. The results are shown relative to a VFDR based on a neural network simulator (NNS) along with a neural network reconstructor (NNR) or a FLR The NNS is trained off-line, using available flight data for the particular aircraft, for the purpose of simulating any desired dynamic output recorded in current FDRs. The NNS is then interfaced with the NNR or with the FLR. The output of the two reconstructors are the control surface deflections which minimize a performance index based on the differences between the available data from the FDR and the output from the NNS. The study tested with night data from a B737-300 shows that both schemes, the one with the NNR and the one with the FLR, provide accurate reconstructions of the control surface deflections time histories  相似文献   
963.
A synthesis-by-analysis model for texture replication or simulation is presented. This model can closely replicate a given textured image or produce another image that although distinct from the original, has the same general visual characteristics and the same first and second-order gray-level statistics as the original image. The texture synthesis algorithm, proposed contains three distinct components: a moving-average (MA) filter, a filter excitation function, and a gray-level histogram. The analysis portion of the texture synthesis algorithm derives the three from a given image. The synthesis portion convolves the MA filter kernel with the excitation function, adds noise, and modifies the histogram of the result. The advantages of this texture model over others include conceptually and computationally simple and robust parameter estimation, inherent stability, parsimony in the number of parameters, and synthesis through convolution. The authors describe a procedure for deriving the correct MA kernel using a signal enhancement algorithm, demonstrate the effectiveness of the model by using it to mimic several diverse textured images, discuss its applicability to the problem of infrared background simulation, and include detailed algorithms for the implementation of the model  相似文献   
964.
An Overview of the Fast Auroral SnapshoT (FAST) Satellite   总被引:3,自引:0,他引:3  
Pfaff  R.  Carlson  C.  Watzin  J.  Everett  D.  Gruner  T. 《Space Science Reviews》2001,98(1-2):1-32
The FAST satellite is a highly sophisticated scientific satellite designed to carry out in situ measurements of acceleration physics and related plasma processes associated with the Earth's aurora. Initiated and conceptualized by scientists at the University of California at Berkeley, this satellite is the second of NASA's Small Explorer Satellite program designed to carry out small, highly focused, scientific investigations. FAST was launched on August 21, 1996 into a high inclination (83°) elliptical orbit with apogee and perigee altitudes of 4175 km and 350 km, respectively. The spacecraft design was tailored to take high-resolution data samples (or `snapshots') only while it crosses the auroral zones, which are latitudinally narrow sectors that encircle the polar regions of the Earth. The scientific instruments include energetic electron and ion electrostatic analyzers, an energetic ion instrument that distinguishes ion mass, and vector DC and wave electric and magnetic field instruments. A state-of-the-art flight computer (or instrument data processing unit) includes programmable processors that trigger the burst data collection when interesting physical phenomena are encountered and stores these data in a 1 Gbit solid-state memory for telemetry to the Earth at later times. The spacecraft incorporates a light, efficient, and highly innovative design, which blends proven sub-system concepts with the overall scientific instrument and mission requirements. The result is a new breed of space physics mission that gathers unprecedented fields and particles observations that are continuous and uninterrupted by spin effects. In this and other ways, the FAST mission represents a dramatic advance over previous auroral satellites. This paper describes the overall FAST mission, including a discussion of the spacecraft design parameters and philosophy, the FAST orbit, instrument and data acquisition systems, and mission operations.  相似文献   
965.
Mende  S.B.  Heetderks  H.  Frey  H.U.  Stock  J.M.  Lampton  M.  Geller  S.P.  Abiad  R.  Siegmund  O.H.W.  Habraken  S.  Renotte  E.  Jamar  C.  Rochus  P.  Gerard  J.-C.  Sigler  R.  Lauche  H. 《Space Science Reviews》2000,91(1-2):287-318
Two FUV Spectral imaging instruments, the Spectrographic Imager (SI) and the Geocorona Photometer (GEO) provide IMAGE with simultaneous global maps of the hydrogen (121.8 nm) and oxygen 135.6 nm components of the terrestrial aurora and with observations of the three dimensional distribution of neutral hydrogen in the magnetosphere (121.6 nm). The SI is a novel instrument type, in which spectral separation and imaging functions are independent of each other. In this instrument, two-dimensional images are produced on two detectors, and the images are spectrally filtered by a spectrograph part of the instrument. One of the two detectors images the Doppler-shifted Lyman- while rejecting the geocoronal `cold Ly-, and another detector images the OI 135.6 nm emission. The spectrograph is an all-reflective Wadsworth configuration in which a grill arrangement is used to block most of the cold, un-Doppler-shifted geocoronal emission at 121.567 nm. The SI calibration established that the upper limit of transmission at cold geocoronal Ly- is less than 2%. The measured light collecting efficiency was 0.01 and 0.008 cm2 at 121.8 and at 135.6 nm, respectively. This is consistent with the size of the input aperture, the optical transmission, and the photocathode efficiency. The expected sensitivity is 1.8×10–2 and 1.3×10–2 counts per Rayleigh per pixel for each 5 s viewing exposure per satellite revolution (120 s). The measured spatial resolution is better than the 128×128 pixel matrix over the 15°×15° field of view in both wavelength channels. The SI detectors are photon counting devices using the cross delay line principle. In each detector a triple stack microchannel plate (MCP) amplifies the photo-electronic charge which is then deposited on a specially configured anode array. The position of the photon event is measured by digitizing the time delay between the pulses detected at each end of the anode structures. This scheme is intrinsically faster than systems that use charge division and it has a further advantage that it saturates more gradually at high count rates. The geocoronal Ly- is measured by a three-channel photometer system (GEO) which is a separate instrument. Each photometer has a built in MgF2 lens to restrict the field of view to one degree and a ceramic electron multiplier with a KBr photocathode. One of the tubes is pointing radially outward perpendicular to the axis of satellite rotation. The optic of the other two subtend 60° with the rotation axis. These instruments take data continuously at 3 samples per second and rely on the combination of satellite rotation and orbital motion to scan the hydrogen cloud surrounding the earth. The detective efficiencies (effective quantum efficiency including windows) of the three tubes at Ly- are between 6 and 10%.  相似文献   
966.
  总被引:1,自引:0,他引:1  
Reinisch  B.W.  Haines  D.M.  Bibl  K.  Cheney  G.  Galkin  I.A.  Huang  X.  Myers  S.H.  Sales  G.S.  Benson  R.F.  Fung  S.F.  Green  J.L.  Boardsen  S.  Taylor  W.W.L.  Bougeret  J.-L.  Manning  R.  Meyer-Vernet  N.  Moncuquet  M.  Carpenter  D.L.  Gallagher  D.L.  Reiff  P. 《Space Science Reviews》2000,91(1-2):319-359
Radio plasma imaging uses total reflection of electromagnetic waves from plasmas whose plasma frequencies equal the radio sounding frequency and whose electron density gradients are parallel to the wave normals. The Radio Plasma Imager (RPI) has two orthogonal 500-m long dipole antennas in the spin plane for near omni-directional transmission. The third antenna is a 20-m dipole along the spin axis. Echoes from the magnetopause, plasmasphere and cusp will be received with the three orthogonal antennas, allowing the determination of their angle-of-arrival. Thus it will be possible to create image fragments of the reflecting density structures. The instrument can execute a large variety of programmable measuring options at frequencies between 3 kHz and 3 MHz. Tuning of the transmit antennas provides optimum power transfer from the 10 W transmitter to the antennas. The instrument can operate in three active sounding modes: (1) remote sounding to probe magnetospheric boundaries, (2) local (relaxation) sounding to probe the local plasma frequency and scalar magnetic field, and (3) whistler stimulation sounding. In addition, there is a passive mode to record natural emissions, and to determine the local electron density, the scalar magnetic field, and temperature by using a thermal noise spectroscopy technique.  相似文献   
967.
Green  J.L.  Benson  R.F.  Fung  S.F.  Taylor  W.W.L.  Boardsen  S.A.  Reinisch  B.W.  Haines  D.M.  Bibl  K.  Cheney  G.  Galkin  I.A.  Huang  X.  Myers  S.H.  Sales  G.S.  Bougeret  J.-L.  Manning  R.  Meyer-Vernet  N.  Moncuquet  M.  Carpenter  D.L.  Gallagher  D.L.  Reiff  P.H. 《Space Science Reviews》2000,91(1-2):361-389
The Radio Plasma Imager (RPI) will be the first-of-its kind instrument designed to use radio wave sounding techniques to perform repetitive remote sensing measurements of electron number density (N e) structures and the dynamics of the magnetosphere and plasmasphere. RPI will fly on the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) mission to be launched early in the year 2000. The design of the RPI is based on recent advances in radio transmitter and receiver design and modern digital processing techniques perfected for ground-based ionospheric sounding over the last two decades. Free-space electromagnetic waves transmitted by the RPI located in the low-density magnetospheric cavity will be reflected at distant plasma cutoffs. The location and characteristics of the plasma at those remote reflection points can then be derived from measurements of the echo amplitude, phase, delay time, frequency, polarization, Doppler shift, and echo direction. The 500 m tip-to-tip X and Y (spin plane) antennas and 20 m Z axis antenna on RPI will be used to measures echoes coming from distances of several R E. RPI will operate at frequencies between 3 kHz to 3 MHz and will provide quantitative N e values from 10–1 to 105 cm–3. Ray tracing calculations, combined with specific radio imager instrument characteristics, enables simulations of RPI measurements. These simulations have been performed throughout an IMAGE orbit and under different model magnetospheric conditions. They dramatically show that radio sounding can be used quite successfully to measure a wealth of magnetospheric phenomena such as magnetopause boundary motions and plasmapause dynamics. The radio imaging technique will provide a truly exciting opportunity to study global magnetospheric dynamics in a way that was never before possible.  相似文献   
968.
    
von Steiger  R.  Zurbuchen  T.H.  Geiss  J.  Gloeckler  G.  Fisk  L.A.  Schwadron  N.A. 《Space Science Reviews》2001,97(1-4):123-127
The source region of solar wind plasma is observed to be directly reflected in the compositional pattern of both elemental and charge state compositions. Slow solar wind associated with streamers shows higher freeze-in temperatures and larger FIP enhancements than coronal hole associated wind. Also, the variability of virtually all compositional parameters is much higher for slow solar wind compared to coronal hole associated wind. We show that these compositional patterns persist even though stream-stream interactions complicate the identification based on in situ plasma parameters. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
969.
Tappin  S.J.  Simnett  G.M.  Lyons  M.A. 《Space Science Reviews》2001,97(1-4):17-20
In a previous paper (Tappin et al., 1999) we used cross-correlation analysis of high-cadence observations with the LASCO coronagraphs to trace the acceleration of the solar wind at low latitudes. In this paper we present a similar analysis carried out over the North pole of the Sun. The observations which were made in March 2000 with the C3 coronagraph show low bulk flow speeds (comparable to or lower than those seen at the equator in early 1998). We observe the acceleration continuing to the edge of the C3 field of view at about 30 R . We also observe, as at low latitude, a high-speed tail but now reaching out well beyond 2000 km s−1. We do not see a clear signature of a fast polar bulk flow. We therefore conclude that at this phase of the solar cycle, any fast bulk flow occupies only a small part of the line of sight and is therefore overwhelmed by the denser slow solar wind in these observations. We also show that the fast component is consistent with observed solar wind speeds at 1 AU. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
970.
The Cassini visual and infrared mapping spectrometer (VIMS) investigation is a multidisciplinary study of the Saturnian system. Visual and near-infrared imaging spectroscopy and high-speed spectrophotometry are the observational techniques. The scope of the investigation includes the rings, the surfaces of the icy satellites and Titan, and the atmospheres of Saturn and Titan. In this paper, we will elucidate the major scientific and measurement goals of the investigation, the major characteristics of the Cassini VIMS instrument, the instrument calibration, and operation, and the results of the recent Cassini flybys of Venus and the Earth–Moon system.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号