首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5634篇
  免费   32篇
  国内免费   24篇
航空   2806篇
航天技术   1964篇
综合类   13篇
航天   907篇
  2021年   36篇
  2019年   33篇
  2018年   79篇
  2017年   55篇
  2016年   54篇
  2015年   36篇
  2014年   108篇
  2013年   149篇
  2012年   131篇
  2011年   194篇
  2010年   136篇
  2009年   209篇
  2008年   280篇
  2007年   153篇
  2006年   118篇
  2005年   150篇
  2004年   143篇
  2003年   172篇
  2002年   112篇
  2001年   179篇
  2000年   97篇
  1999年   133篇
  1998年   155篇
  1997年   116篇
  1996年   166篇
  1995年   202篇
  1994年   186篇
  1993年   105篇
  1992年   145篇
  1991年   68篇
  1990年   60篇
  1989年   142篇
  1988年   55篇
  1987年   51篇
  1986年   63篇
  1985年   167篇
  1984年   169篇
  1983年   111篇
  1982年   136篇
  1981年   172篇
  1980年   50篇
  1979年   60篇
  1978年   57篇
  1977年   38篇
  1975年   56篇
  1974年   44篇
  1973年   36篇
  1972年   47篇
  1969年   35篇
  1967年   36篇
排序方式: 共有5690条查询结果,搜索用时 15 毫秒
941.
Increased sensitivity and dynamic range of the instrumental techniques used in conjunction with experiments on ballistic ranges have brought to the fore many problems arising from contamination in the ranges themselves. This is seldom discussed when experimental results are presented but is frequently the controlling limitation on the accuracy of the measurements. The authors discuss contamination due to dirt and debris resultant from gun operation, gaseous impurities, and projectile-borne impurities as they have occurred at the Re-entry Simulating Range of Lincoln Laboratory. The effects of these contaminants on measurements are discussed and illustrated, and measures for controlling them are outlined. Finally, a particular range operation is described from the standpoint of impurity control.  相似文献   
942.
The Galileo spacecraft was launched by the Space Shuttle Atlantis on October 18, 1989. A two-stage Inertial Upper Stage propelled Galileo out of Earth parking orbit to begin its 6-year interplanetary transfer to Jupiter. Galileo has already received two gravity assists: from Venus on February 10, 1990 and from Earth on December 8, 1990. After a second gravity-assist flyby of Earth on December 8, 1992, Galileo will have achieved the energy necessary to reach Jupiter. Galileo's interplanetary trajectory includes a close flyby of asteroid 951-Gaspra on October 29, 1991, and, depending on propellant availability and other factors, there may be a second asteroid flyby of 243-Ida on August 28, 1993. Upon arrival at Jupiter on December 7, 1995, the Galileo Orbiter will relay data back to Earth from an atmospheric Probe which is released five months earlier. For about 75 min, data is transmitted to the Orbiter from the Probe as it descends on a parachute to a pressure depth of 20–30 bars in the Jovian atmosphere. Shortly after the end of Probe relay, the Orbiter ignites its rocket motor to insert into orbit about Jupiter. The orbital phase of the mission, referred to as the satellite tour, lasts nearly two years, during which time Galileo will complete 10 orbits about Jupiter. On each of these orbits, there will be a close encounter with one of the three outermost Galilean satellites (Europa, Ganymede, and Callisto). The gravity assist from each satellite is designed to target the spacecraft to the next encounter with minimal expenditure of propellant. The nominal mission is scheduled to end in October 1997 when the Orbiter enters Jupiter's magnetotail.List of Acronyms ASI Atmospheric Structure Instrument - EPI Energetic Particles Instrument - HGA High Gain Antenna - IUS Inertial Upper Stage - JOI Jupiter Orbit Insertion - JPL Jet Propulsion Laboratory - LRD Lightning and Radio Emissions Detector - NASA National Aeronautics and Space Administration - NEP Nephelometer - NIMS Near-Infrared Mapping Spectrometer - ODM Orbit Deflection Maneuver - OTM Orbit Trim Maneuver - PJR Perijove Raise Maneuver - PM Propellant Margin - PDT Pacific Daylight Time - PST Pacific Standard Time - RPM Retropropulsion Module - RRA Radio Relay Antenna - SSI Solid State Imaging - TCM Trajectory Correction Maneuver - UTC Universal Time Coordinated - UVS Ultraviolet Spectrometer - VEEGA Venus-Earth-Earth Gravity Assist  相似文献   
943.
Fedorov  A.  Budnik  E. 《Cosmic Research》2000,38(6):540-546
Localization of the reconnection region at the dayside magnetopause is among the unsolved problems of magnetospheric physics. There are two alternative models, one of which predicts the reconnection at the equatorial magnetopause, and the other predicts the reconnection in the region where the magnetic field of the solar wind flowing around the magnetosphere is antiparallel to the geomagnetic field. The statistical analysis carried out for 53 INTERBALL-1crossings of the high-latitude magnetopause in a special coordinate frame invariant with respect to the interplanetary conditions shows that the model of a reconnection in antiparallel fields agrees well with the experimental data.  相似文献   
944.
The Ca K line has been measured regularly nearly every month since 1974 at Kitt Peak. It is well known that the K1 component of the Ca K line is formed in the temperature minimum region (TMR) of the solar atmosphere. Our study of the data of CaII K profiles over two solar cycles indicates that both in full disc integrated spectra and in center disc spectra, the distance between the red K1 and the blue K1 of the profiles and its average intensity show periodic variations. But the variation for the full disc integrated spectra fluctuates in the same way as the sunspot number does, while that for the center disc spectra has a time delay with respect to sunspot number. Non-LTE computations yield a cyclic temperature variation of about 17 K of the TMR in the quiet-Sun atmosphere and a cyclic variation of about 15–20 km in the height position of the TMR.  相似文献   
945.
何沛  邓向阳  鄂亚佳  徐榕  张弛  林宇震 《推进技术》2019,40(12):2766-2774
为了研究中心分级贫油低排放燃烧室的排放特性和排放预测方法,针对一个低排放头部方案,在单头部燃烧室试验件上,在不同的温度、压力、油气比、供油模式和分级比条件下,测量其排放性能。以Lefebvre排放经验预测公式为基础,采用经验分析方法拟合排放试验数据,归纳出适用于本头部方案的排放预测公式。表征预测好坏的判定系数R2在小工况下和大工况下分别为0.95和0.93,表明预测结果与试验结果符合度较好。小工况和大工况排放特性不同,对仅预燃级喷油的小工况工作模式,NO_x排放主要受化学恰当燃烧温度和预燃级局部当量比的影响;对预燃级和主燃级同时喷油的大工况工作模式,NO_x排放主要受燃烧区温度和主燃级燃油比例的影响。  相似文献   
946.
In this paper, using the Gauss-Rotation model (GR model), we analyse the UV C IV resonance lines in the spectra of 20 Oe-stars of different spectral subtypes, in order to detect the structure of C IV region. We study the presence and behavior of absorption clouds and analyse their characteristics. From this analysis we can calculate the values of a group of physical parameters, such as the apparent rotational and radial velocities, the random velocities of the thermal motions of the ions, the Full Width at Half Maximum (FWHM), the optical depth, as well as the absorbed energy and the column density of the independent regions of matter, which produce the main and the satellite clouds of the studied spectral lines. Finally, we present the relations between these physical parameters and the spectral subtypes of the studied stars and we give our results about the structure of the C IV region in their atmosphere.  相似文献   
947.
Energetic solar proton events within the energy interval 1–48 MeV at the stage of their decay are considered over the period of 1974–2001. The dependence of the characteristic decay time on the proton energy in the assumed power-law representation τ(E) =E ?n is analyzed for the events with an exponential decay form. The dependence of n on the heliolongitude of the flare (the particles source on the Sun) is studied.  相似文献   
948.
The article presents data concerning the osmolality and concentration of electrolytes and hormones regulating their balance for blood serum of 223 cosmonauts and astronauts. The obtained results allow us to judge the constancy of physicochemical parameters for the blood serum of healthy individuals and how they react to extreme conditions of space flight. The parameters used for evaluation included not just absolute values for the examined indices, but also how they responded to space flight, the dependence on baseline values and the interrelationship between ions. These data are important to predict the effect of exposure to extreme conditions and point to what extent the effect depends on the characteristics of the individual.  相似文献   
949.
Lagrangian points L4 and L5 lie at 60° ahead of and behind the Moon in its orbit with respect to the Earth. Each one of them is a third point of an equilateral triangle with the base of the line defined by those two bodies. These Lagrangian points are stable for the Earth–Moon mass ratio. As so, these Lagrangian points represent remarkable positions to host astronomical observatories or space stations. However, this same distance characteristic may be a challenge for periodic servicing mission. This paper studies elliptic trajectories from an Earth circular parking orbit to reach the Moon’s sphere of influence and apply a swing-by maneuver in order to re-direct the path of a spacecraft to a vicinity of the Lagrangian points L4 and L5. Once the geocentric transfer orbit and the initial impulsive thrust have been determined, the goal is to establish the angle at which the geocentric trajectory crosses the lunar sphere of influence in such a way that when the spacecraft leaves the Moon’s gravitational field, its trajectory and velocity with respect to the Earth change in order to the spacecraft arrives at L4 and L5. In this work, the planar Circular Restricted Three Body Problem approximation is used and in order to avoid solving a two boundary problem, the patched-conic approximation is considered.  相似文献   
950.
Modulation of the VLF emission and riometric absorption by Pc5 geomagnetic pulsations is studied in the period of strong geomagnetic disturbances on October 30–31, 2003. Some conclusions about the regime of pitch-angular diffusion into the loss cone are made. The better coincidence of VLF emission modulation with geomagnetic pulsations in other longitude sectors is explained by the global character of excitation of the pulsations and by damping of their amplitudes at the meridian of observation of the VLF emission, which is associated with intensification of auroral electrojets.Translated from Kosmicheskie Issledovaniya, Vol. 42, No. 6, 2004, pp. 632–639.Original Russian Text Copyright © 2004 by Solovyev, Mullayarov, Baishev, Barkova, Samsonov.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号