首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3148篇
  免费   8篇
  国内免费   12篇
航空   1668篇
航天技术   1080篇
综合类   9篇
航天   411篇
  2018年   37篇
  2017年   19篇
  2016年   22篇
  2014年   54篇
  2013年   78篇
  2012年   59篇
  2011年   105篇
  2010年   82篇
  2009年   112篇
  2008年   175篇
  2007年   90篇
  2006年   60篇
  2005年   77篇
  2004年   78篇
  2003年   100篇
  2002年   52篇
  2001年   99篇
  2000年   48篇
  1999年   79篇
  1998年   93篇
  1997年   73篇
  1996年   91篇
  1995年   124篇
  1994年   98篇
  1993年   66篇
  1992年   101篇
  1991年   42篇
  1990年   36篇
  1989年   87篇
  1988年   33篇
  1987年   28篇
  1986年   32篇
  1985年   87篇
  1984年   91篇
  1983年   59篇
  1982年   82篇
  1981年   92篇
  1980年   34篇
  1979年   42篇
  1978年   32篇
  1977年   22篇
  1976年   21篇
  1975年   37篇
  1974年   24篇
  1973年   18篇
  1972年   29篇
  1969年   17篇
  1968年   16篇
  1967年   20篇
  1966年   16篇
排序方式: 共有3168条查询结果,搜索用时 15 毫秒
111.
Lower-mesospheric inversion layers (MILs) were studied using the temperature profiles observed by TIMED/SABER over Cariri (7.5°S, 36.5°W), Brazil, in 2005. A total 175 MILs were identified with the maximum occurrence in April and October and the minimum in January and July. The lower MIL is located in a height region from 70 to 90 km, with the peak at around 83 ± 4 km with the temperature of 205 ± 5 K, and the thickness of 4–10 km. The results show large amplitudes of MILs during equinoxes and minimum in solstices, with a clear semiannual variation. A general feature of lower MIL in monthly mean profile was observed twice a year, one from February to May, and the other from August to October with a downward shift of the top level. These results suggest that formation and long persistence of MIL is an important factor to investigate propagation of atmospheric gravity waves in the mesosphere-lower thermosphere (MLT) region.  相似文献   
112.
113.
Solar modulations of galactic cosmic ray (GCR) intensity contain a wealth of information about their transport in the heliosphere. To extract this information from the data one studies the dependence of the observed modulations on the mean energy of response of detectors providing data for the analyses. There is a great deal of confusion about the detector energy response to GCR spectrum in the literature. We present a preliminary report on the computations of the mean energy of response for the Climax neutron monitor (CL/NM) and IMP 8 cosmic ray nuclear composition instrument to GCR protons for 1973–1998, covering the solar cycles 21 and 22. We find that for penetrating proton channel on IMP 8 the mean energy changes by a factor of over two whereas for the neutron monitor the change is only 21%. However, the corresponding change for the computed modulation function is a factor of about 3.5.  相似文献   
114.
Satellite-based limb occultation measurements are well suited for the detection and mapping of polar stratospheric clouds (PSCs) and cirrus clouds. PSCs are of fundamental importance for the formation of the Antarctic ozone hole that occurs every year since the early 1980s in Southern Hemisphere spring. Despite progress in the observation, modeling and understanding of PSCs in recent years, there are still important questions which remain to be resolved, e.g. PSC microphysics, composition, formation mechanisms and long-term changes in occurrence. In addition, it has recently become clear that cirrus clouds significantly affect the global energy balance and climate, due to their influence on atmospheric thermal structure.  相似文献   
115.
We present a compact atomic frequency standard based on the interrogation of magnetically trapped 87Rb atoms. Two photons, in the microwave and radiofrequency domain excite the atomic transition. At a magnetic field of 3.23 G this transition from ∣F = 1, mF = −1〉 to ∣F = 2, mF = 1〉 is 1st order insensitive to magnetic field variations. Long Ramsey interrogation times can thus be achieved, leading to a projected stability in the low 10−13 at 1 s. This makes this device a viable alternative to LITE and HORACE as a good candidate for replacing or complementing the rubidium frequency standards and passive hydrogen masers already on board of the GPS, GLONASS, and GALILEO satellites. Here we present preliminary results. We use an atom chip to cool and trap the atoms. A coplanar waveguide is integrated to the chip to carry the Ramsey interrogation signal, making the physics package potentially as small as (5 cm)3. We describe the experimental apparatus and show preliminary Ramsey fringes of 1.25 Hz linewidth. We also show a preliminary frequency stability σy = 1.5 × 10−12τ−1/2 for 10 < τ < 103 s. This represents one order of magnitude improvement with respect to previous experiments.  相似文献   
116.
Hard X-ray emitting symbiotic stars are candidates for SN Ia progenitors. The importance of Type Ia SNe as standard candles for cosmology makes the study of their progenitor systems particularly important. Additionally, they provide one of the most promising laboratories for the study of astrophysical jets. Typically, the X-ray emission in these systems is modeled with a collisional plasma model, sometimes with an emission measure distribution taken from a cooling flow model. The lack of any coherent periods in both X-rays and optical wave band strongly suggests that the accreting white dwarfs in the hard X-ray symbiotic stars are non-magnetic. Although relatively few have been discovered to date, but we believe that there are very many of them in our galaxy and could be possible candidates for the Galactic Ridge X-ray Emissions (GRXE).  相似文献   
117.
The adaptation of specific remote sensing and hyperspectral analysis techniques for the determination of incipient nutrient stress in plants could allow early detection and precision supplementation for remediation, important considerations for minimizing mass of advanced life support systems on space station and long term missions. This experiment was conducted to determine if hyperspectral reflectance could be used to detect nutrient stress in Lactuca sativa L. cv. Black Seeded Simpson. Lettuce seedlings were grown for 90 days in a greenhouse or growth chamber in vermiculite containing modified Hoagland’s nutrient solution with key macronutrient elements removed in order to induce a range of nutrient stresses, including nitrogen, phosphorus, potassium, calcium, and magnesium. Leaf tissue nutrient concentrations were compared with corresponding spectral reflectances taken at the end of 90 days. Spectral reflectances varied with growing location, position on the leaf, and nutrient deficiency treatment. Spectral responses of lettuce leaves under macronutrient deficiency conditions showed an increase in reflectance in the red, near red, and infrared wavelength ranges. The data obtained suggest that spectral reflectance shows the potential as a diagnostic tool in predicting nutrient deficiencies in general. Overlapping of spectral signatures makes the use of wavelengths of narrow bandwidths or individual bands for the discrimination of specific nutrient stresses difficult without further data processing.  相似文献   
118.
Adequate representations of diverse dynamical processes in general circulation models (GCM) are necessary to obtain reliable simulations of the present and the future. The parameterization of orographic gravity wave drag (GWD) is one of the critical components of GCM. It is therefore convenient to evaluate whether standard orographic GWD parameterizations are appropriate. One alternative is to study the generation of gravity waves (GW) with horizontal resolutions that are higher than those used in current GCM simulations. Here we assess the seasonal pattern of topographic GW momentum flux (GWMF) generation for the late 20th and 21st centuries in a downscaling using the Rossby Centre regional atmospheric model under the Intergovernmental Panel on Climate Change A1B emission conditions. We focus on one of the world’s strongest extra-tropical GW zones, the Andes Mountains at mid-latitudes in the Southern Hemisphere. The presence of two GCM sub-grid scale structures locally contributing to GWMF (one positive and one negative) is found to the East of the mountains. For the late 21st century the strength of these structures during the GW high season increases around 23% with respect to the late 20th century, but the GWMF average over GCM grid cell scales remains negative and nearly constant around −0.015 Pa. This constitutes a steady significant contribution during GW high season, which is not related to the GWMF released by individual sporadic strong GW events. This characteristic agrees with the fact that no statistically significant variation in GWMF at source level has been observed in recent GCM simulations of atmospheric change induced by increases in greenhouse gases.  相似文献   
119.
Previous studies have identified solar 27-day signatures in several parameters in the Mesosphere/Lower thermosphere region, including temperature and Noctilucent cloud (NLC) occurrence frequency. In this study we report on a solar 27-day signature in NLC altitude with peak-to-peak variations of about 400?m. We use SCIAMACHY limb-scatter observations from 2002 to 2012 to detect NLCs. The superposed epoch analysis method is applied to extract solar 27-day signatures. A 27-day signature in NLC altitude can be identified in both hemispheres in the SCIAMACHY dataset, but the signature is more pronounced in the northern hemisphere. The solar signature in NLC altitude is found to be in phase with solar activity and temperature for latitudes ?70°N. We provide a qualitative explanation for the positive correlation between solar activity and NLC altitude based on published model simulations.  相似文献   
120.
The magnetospheric imaging instrument (MIMI) is a neutral and charged particle detection system on the Cassini orbiter spacecraft designed to perform both global imaging and in-situ measurements to study the overall configuration and dynamics of Saturn’s magnetosphere and its interactions with the solar wind, Saturn’s atmosphere, Titan, and the icy satellites. The processes responsible for Saturn’s aurora will be investigated; a search will be performed for substorms at Saturn; and the origins of magnetospheric hot plasmas will be determined. Further, the Jovian magnetosphere and Io torus will be imaged during Jupiter flyby. The investigative approach is twofold. (1) Perform remote sensing of the magnetospheric energetic (E > 7 keV) ion plasmas by detecting and imaging charge-exchange neutrals, created when magnetospheric ions capture electrons from ambient neutral gas. Such escaping neutrals were detected by the Voyager l spacecraft outside Saturn’s magnetosphere and can be used like photons to form images of the emitting regions, as has been demonstrated at Earth. (2) Determine through in-situ measurements the 3-D particle distribution functions including ion composition and charge states (E > 3 keV/e). The combination of in-situ measurements with global images, together with analysis and interpretation techniques that include direct “forward modeling’’ and deconvolution by tomography, is expected to yield a global assessment of magnetospheric structure and dynamics, including (a) magnetospheric ring currents and hot plasma populations, (b) magnetic field distortions, (c) electric field configuration, (d) particle injection boundaries associated with magnetic storms and substorms, and (e) the connection of the magnetosphere to ionospheric altitudes. Titan and its torus will stand out in energetic neutral images throughout the Cassini orbit, and thus serve as a continuous remote probe of ion flux variations near 20R S (e.g., magnetopause crossings and substorm plasma injections). The Titan exosphere and its cometary interaction with magnetospheric plasmas will be imaged in detail on each flyby. The three principal sensors of MIMI consists of an ion and neutral camera (INCA), a charge–energy–mass-spectrometer (CHEMS) essentially identical to our instrument flown on the ISTP/Geotail spacecraft, and the low energy magnetospheric measurements system (LEMMS), an advanced design of one of our sensors flown on the Galileo spacecraft. The INCA head is a large geometry factor (G ∼ 2.4 cm2 sr) foil time-of-flight (TOF) camera that separately registers the incident direction of either energetic neutral atoms (ENA) or ion species (≥5 full width half maximum) over the range 7 keV/nuc < E < 3 MeV/nuc. CHEMS uses electrostatic deflection, TOF, and energy measurement to determine ion energy, charge state, mass, and 3-D anisotropy in the range 3 ≤ E ≤ 220 keV/e with good (∼0.05 cm2 sr) sensitivity. LEMMS is a two-ended telescope that measures ions in the range 0.03 ≤ E ≤ 18 MeV and electrons 0.015 ≤ E≤ 0.884 MeV in the forward direction (G ∼ 0.02 cm2 sr), while high energy electrons (0.1–5 MeV) and ions (1.6–160 MeV) are measured from the back direction (G ∼ 0.4 cm2 sr). The latter are relevant to inner magnetosphere studies of diffusion processes and satellite microsignatures as well as cosmic ray albedo neutron decay (CRAND). Our analyses of Voyager energetic neutral particle and Lyman-α measurements show that INCA will provide statistically significant global magnetospheric images from a distance of ∼60 R S every 2–3 h (every ∼10 min from ∼20 R S). Moreover, during Titan flybys, INCA will provide images of the interaction of the Titan exosphere with the Saturn magnetosphere every 1.5 min. Time resolution for charged particle measurements can be < 0.1 s, which is more than adequate for microsignature studies. Data obtained during Venus-2 flyby and Earth swingby in June and August 1999, respectively, and Jupiter flyby in December 2000 to January 2001 show that the instrument is performing well, has made important and heretofore unobtainable measurements in interplanetary space at Jupiter, and will likely obtain high-quality data throughout each orbit of the Cassini mission at Saturn. Sample data from each of the three sensors during the August 18 Earth swingby are shown, including the first ENA image of part of the ring current obtained by an instrument specifically designed for this purpose. Similarily, measurements in cis-Jovian space include the first detailed charge state determination of Iogenic ions and several ENA images of that planet’s magnetosphere.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号