首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4205篇
  免费   5篇
  国内免费   11篇
航空   2287篇
航天技术   1076篇
综合类   9篇
航天   849篇
  2018年   171篇
  2017年   143篇
  2016年   58篇
  2015年   37篇
  2014年   55篇
  2013年   78篇
  2012年   100篇
  2011年   236篇
  2010年   208篇
  2009年   242篇
  2008年   266篇
  2007年   230篇
  2006年   61篇
  2005年   132篇
  2004年   92篇
  2003年   100篇
  2002年   52篇
  2001年   102篇
  2000年   48篇
  1999年   79篇
  1998年   93篇
  1997年   73篇
  1996年   91篇
  1995年   124篇
  1994年   98篇
  1993年   69篇
  1992年   102篇
  1991年   42篇
  1990年   36篇
  1989年   87篇
  1988年   32篇
  1987年   28篇
  1986年   32篇
  1985年   87篇
  1984年   91篇
  1983年   59篇
  1982年   82篇
  1981年   92篇
  1980年   34篇
  1979年   42篇
  1978年   32篇
  1977年   22篇
  1976年   21篇
  1975年   37篇
  1974年   24篇
  1973年   18篇
  1972年   29篇
  1969年   17篇
  1967年   20篇
  1966年   16篇
排序方式: 共有4221条查询结果,搜索用时 31 毫秒
61.
The considerable evidence that Mars once had a wetter, more clement, environment motivates the search for past or present life on that planet. This evidence also suggests the possibility of restoring habitable conditions on Mars. While the total amounts of the key molecules--carbon dioxide, water, and nitrogen--needed for creating a biosphere on Mars are unknown, estimates suggest that there may be enough in the subsurface. Super greenhouse gases, in particular, perfluorocarbons, are currently the most effective and practical way to warm Mars and thicken its atmosphere so that liquid water is stable on the surface. This process could take approximately 100 years. If enough carbon dioxide is frozen in the South Polar Cap and absorbed in the regolith, the resulting thick and warm carbon dioxide atmosphere could support many types of microorganisms, plants, and invertebrates. If a planet-wide martian biosphere converted carbon dioxide into oxygen with an average efficiency equal to that for Earth's biosphere, it would take > 100,000 years to create Earth-like oxygen levels. Ethical issues associated with bringing life to Mars center on the possibility of indigenous martian life and the relative value of a planet with or without a global biosphere.  相似文献   
62.
Earth's subsurface offers one of the best possible sites to search for microbial life and the characteristic lithologies that life leaves behind. The subterrain may be equally valuable for astrobiology. Where surface conditions are particularly hostile, like on Mars, the subsurface may offer the only habitat for extant lifeforms and access to recognizable biosignatures. We have identified numerous unequivocally biogenic macroscopic, microscopic, and chemical/geochemical cave biosignatures. However, to be especially useful for astrobiology, we are looking for suites of characteristics. Ideally, "biosignature suites" should be both macroscopically and microscopically detectable, independently verifiable by nonmorphological means, and as independent as possible of specific details of life chemistries--demanding (and sometimes conflicting) criteria. Working in fragile, legally protected environments, we developed noninvasive and minimal impact techniques for life and biosignature detection/characterization analogous to Planetary Protection Protocols. Our difficult field conditions have shared limitations common to extraterrestrial robotic and human missions. Thus, the cave/subsurface astrobiology model addresses the most important goals from both scientific and operational points of view. We present details of cave biosignature suites involving manganese and iron oxides, calcite, and sulfur minerals. Suites include morphological fossils, mineral-coated filaments, living microbial mats and preserved biofabrics, 13C and 34S values consistent with microbial metabolism, genetic data, unusual elemental abundances and ratios, and crystallographic mineral forms.  相似文献   
63.
Pozzo T  Berthoz A  Popov C 《Acta Astronautica》1995,36(8-12):727-732
Here are reported preliminary results of the “Synergy” experiment performed aboard the Russian orbital station “MIR” in July 1993 (Altaïr Mission). The experiment was carried out before, during, and after the space flight of two astronauts (S1 and S2). The duration of the flight was 21 days for S1 and 6 month for S2. The subjects were tested during preflight, inflight and postflight. The astronaut subjects were fixed on the ground by the feet. They were asked to pick up a box in front of them on the ground. Two velocities of movement and two distances of the target to be reached were tested. The movement of several small markers placed on the body was recorded on video tape.

Results show that the shape of head and hand trajectories in the sagittal plane remains roughly the same during the flight in spite of the modification of mechanical constraints. Trajectory invariance does not result in joint angular displacement invariance. These data indicate that the planning of the movement takes place in terms of head and hand trajectories rather than joint rotations as it was previously suggested for simple arm reaching movement.  相似文献   

64.
A simplified model for the orbital and relative motion of a tethered satellite system is presented. The tether acts as a light elastic string with small structural damping but without bending stiffness. Its mass is taken into account in the calculation of the total kinetic and potential energies of the tethered system. This formulation allows the inclusion of the complete gravity gradient influence on the dynamics of the system. The resulting three-dimensional motion is separated in the centre of mass orbital motion on the one hand and the relative motion of the end-bodies on the other. No restrictions on length of the tether or on mass ratio of the end-masses are imposed. It is found that the frequencies and amplitudes of the longitudinal tether oscillations are realistic as long as the tether mass is less than that of the subsatellite.  相似文献   
65.
Measurements of the wave emission of the topside ionosphere made onboard the APEX satellite using the electric component of the wave field in the 0.1–10 MHz frequency band are presented. At middle latitudes a wave intensity decrease was observed in the broad-band spectrum of the electrostatic noise at the electron cyclotron frequency. It is shown that a break in the spectrum of electrostatic modes at the electron cyclotron frequency (the absence of the plasma eigen-frequencies) may be a cause of the observed effect. The increase of the intensity at the electron cyclotron frequency in the ionospheric trough and at latitudes above the trough region as compared to middle latitudes may be explained by the capture by plasma irregularities of the electromagnetic emission of the auroral electron fluxes.__________Translated from Kosmicheskie Issledovaniya, Vol. 43, No. 3, 2005, pp. 201–208.Original Russian Text Copyright © 2005 by Izhovkina, Prutensky, Pulinets, Kiraga, Klos, Rothkael.  相似文献   
66.
We consider a relationship between the difference in spectral indices of the spectra of single hadrons and all hadrons (snglh) and the difference in the indices of the spectra of galactic cosmic ray (GCR) protons and nuclei. It is demonstrated that at the mountain level the ratio (pZ)/(snglh) is always larger than unity, if (snglh) > 0.1. From the experimental value snglh = 0.4 ± 0.05 we derive that, in the vicinity of E = 10 TeV, pZ 0.49 ± 0.06 , i.e., p 3.09 ± 0.06.__________Translated from Kosmicheskie Issledovaniya, Vol. 43, No. 2, 2005, pp. 83–87.Original Russian Text Copyright © 2005 by Grigorov, Tolstaya.  相似文献   
67.
In Celestial Mechanics the triple close approach is a highly unstable phenomenon that leads very often to the formation of a very small binary escaping with a large velocity in the direction opposite to the escape of the third body.That third escaping body is generally either the smallest mass or the second smallest and it implies a very selective effect in star clusters: the lightest stars are statistically the first to be ejected.  相似文献   
68.
Two bed rest analog studies of space flight were performed; one 14 d and the other 28 d in duration. Exercise response was studied in detail during the 28 d study and following both the 14 d and 28 d studies. This paper relates the results of these studies to physiologic changes noted during and following space flight. The most consistent change noted after both bed rest and space flight is an elevated heart rate during exercise. A second consistent finding is a postflight or postbed rest reduction in cardiac stroke volume. Cardiac output changes were variable. The inability to simulate inflight activity levels and personal exercise makes a direct comparison between bed rest and the results from specific space flights difficult.  相似文献   
69.
Prediction that the various stresses of flight, particularly weightlessness, would bring about significant derangements in the metabolism of the musculoskeletal system has been based on various observations of long-term immobilized or inactive bed rest. The only attempt at controlled measurement of metabolic changes in space prior to Skylab, a study during the 14-day Gemini VII flight, revealed rather modest losses of important elements. The three astronauts of Skylab II consumed a planned day-by-day, quite constant, dietary intake of major metabolic elements in mixed foods and beverages and provided virtually complete collections of excreta for 31 days preflight, during the 28 days inflight, and for 17 days postflight. Analyses showed that, in varying degree among the crewmen, urinary calcium increased gradually during flight in a pattern similar to that observed in bed-rest studies: the mean plateau peak of urinary calcium excretion in the latter part of flight was double preflight levels. Fecal calcium excretion did not change significantly, but calcium balance, owing to the urinary calcium rise, became either negative or less positive than in preflight measurement. Increased excretion and negative balance of nitrogen and phosphorus indicated appreciable loss of muscle tissue in all three crewmen. Significant losses also occurred inflight in potassium, sodium, and magnesium. Based on the similarity in pattern and degree between these observations and those in bed rest of the losses in calcium, phosphorus, and nitrogen, musculoskeletal integrity would not be threatened in space flights of up to at least 3 months. However, if similar changes occur, indicative of continuing losses of these elements, in the planned Skylab flights for considerably more than 28 days, concern for capable musculoskeletal function should be serious for flights of very many months' duration, and greater research attention will need to be given to development of protective counter-measures.  相似文献   
70.
In the past, one of the major problems in performing scientific investigations in space has been the high cost of developing, integrating, and transporting scientific experiments into space. The limited resources of unmanned spacecraft, coupled with the requirements for completely automated operations, was another factor contributing to the high costs of scientific research in space. In previous space missions after developing, integrating and transporting costly experiments into space and obtaining successful data, the experiment facility and spacecraft have been lost forever, because they could not be returned to earth. The objective of this paper is to present how the utilization of the Spacelab System will result in cost benefits to the scientific community, and significantly reduce the cost of space operations from previous space programs.The following approach was used to quantify the cost benefits of using the Spacelab System to greatly reduce the operational costs of scientific research in space. An analysis was made of the series of activities required to combine individual scientific experiments into an integrated payload that is compatible with the Space Transportation System (STS). These activities, including Shuttle and Spacelab integration, communications and data processing, launch support requirements, and flight operations were analyzed to indicate how this new space system, when compared with previous space systems, will reduce the cost of space research. It will be shown that utilization of the Spacelab modular design, standard payload interfaces, optional Mission Dependent Equipment (MDE), and standard services, such as the Experiment Computer Operating System (ECOS), allow the user many more services than previous programs, at significantly lower costs. In addition, the missions will also be analyzed to relate their cost benefit contributions to space scientific research.The analytical tools that are being developed at MSFC in the form of computer programs that can rapidly analyze experiment to Spacelab interfaces will be discussed to show how these tools allow the Spacelab integrator to economically establish the payload compatibility of a Spacelab mission.The information used in this paper has been assimilated from the actual experience gained in integrating over 50 highly complex, scientific experiments that will fly on the Spacelab first and second missions. In addition, this paper described the work being done at the Marshall Space Flight Center (MSFC) to define the analytical integration tools and techniques required to economically and efficiently integrate a wide variety of Spacelab payloads and missions. The conclusions reached in this study are based on the actual experience gained at MSFC in its roles of Spacelab integration and mission managers for the first three Spacelab missions. The results of this paper will clearly show that the cost benefits of the Spacelab system will greatly reduce the costs and increase the opportunities for scientific investigation from space.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号