首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6735篇
  免费   14篇
  国内免费   18篇
航空   3293篇
航天技术   2362篇
综合类   22篇
航天   1090篇
  2021年   51篇
  2019年   34篇
  2018年   125篇
  2017年   76篇
  2016年   79篇
  2015年   48篇
  2014年   165篇
  2013年   179篇
  2012年   179篇
  2011年   258篇
  2010年   185篇
  2009年   298篇
  2008年   396篇
  2007年   186篇
  2006年   144篇
  2005年   192篇
  2004年   165篇
  2003年   223篇
  2002年   129篇
  2001年   220篇
  2000年   107篇
  1999年   157篇
  1998年   183篇
  1997年   138篇
  1996年   161篇
  1995年   220篇
  1994年   198篇
  1993年   119篇
  1992年   172篇
  1991年   85篇
  1990年   67篇
  1989年   157篇
  1988年   63篇
  1987年   65篇
  1986年   63篇
  1985年   165篇
  1984年   156篇
  1983年   125篇
  1982年   154篇
  1981年   190篇
  1980年   68篇
  1979年   68篇
  1978年   57篇
  1977年   40篇
  1976年   45篇
  1975年   52篇
  1974年   43篇
  1973年   39篇
  1972年   48篇
  1971年   37篇
排序方式: 共有6767条查询结果,搜索用时 437 毫秒
801.
The effective growth and development of vascular plants rely on the adequate availability of water and nutrients. Inefficiency in either the initial absorption, transportation, or distribution of these elements are factors which impinge on plant structure and metabolic integrity. The potential effect of space flight and microgravity conditions on the efficiency of these processes is unclear. Limitations in the available quantity of space-grown plant material and the sensitivity of routine analytical techniques have made an evaluation of these processes impractical. However, the recent introduction of new plant cultivating methodologies supporting the application of radionuclide elements and subsequent autoradiography techniques provides a highly sensitive investigative approach amenable to space flight studies. Experiments involving the use of gel based 'nutrient packs' and the radionuclides calcium-45 and iron-59 were conducted on the Shuttle mission STS-94. Uptake rates of the radionuclides between ground and flight plant material appeared comparable.  相似文献   
802.
The objective of this work is to explore ways in which performance of battery systems can be enhanced through the use of energy-efficient battery management techniques. The phenomenon of charge recovery that takes place under pulsed discharge conditions is identified as a mechanism that can be exploited to enhance the capacity of a cell in a portable communication device. The bursty nature of many data traffic sources suggests that data transmissions in communication devices may provide natural opportunities for charge recovery. We model the data source as a stochastic process and let the cell discharge be driven by such a process. We use a model of a dual lithium ion insertion cell to identify the improvement to cell capacity that results from the stochastic discharge. The insight from this study leads us to propose discharge shaping techniques that tradeoff energy efficiency with delay in the required current supply  相似文献   
803.
Computer-aided instruction (CAI) has not achieved widespread use, even though experimental results have been promising, because of a complex of technical, economic, and social factors. The problems these factors produce might be overcome if a major ?market success? could be achieved with CAI systems. One potentially high-volume market, having probably a lower resistance to profound innovation than other sectors of education, is the junior college. To achieve a market success which would catalyze public and private investment to sustain the growth and dissemination of CAI requires technical solutions in the areas of hardware, software, and courseware. Courseware is a term designating the applications programs for CAI systems and associated textual, audio-visual, and other materials of instruction. Two different approaches to the production of courseware and their underlying philosophies are discussed and contrasted. The extent to which these different models of courseware design and development might lead toward the goal of mass dissemination is highlighted.  相似文献   
804.
805.
This article presents an innovative time-domain nonlinear mapping-based identification method. The method reported is applied to identify the unknown parameters of multivariable dynamic systems which are mapped by nonlinear differential equations. A systematic identification method is introduced, and a novel algorithm is developed using nonlinear error maps. An analysis of parameter convergence is provided and the regions of convergence can be found using the second method of Lyapunov. Innovative nonquadratic Lyapunov functions are designed and used. Analytical and numerical studies are performed to illustrate and validate the identification concept. The unsteady flight of a high-alpha aircraft in the longitudinal axis is chosen as a nonlinear case study. The unknown parameters are identified. Simulation results show that the model dynamics match the experimental data. The reported example demonstrates that the time-domain nonlinear mapping-based identification method ensures robustness and reduces major shortcomings in stability, convergence, and computational efficiency compared with other algorithms available  相似文献   
806.
Metallic Power has demonstrated a regenerative zinc air fuel cell for applications in industrial and specialty vehicles. The fuel cell uses zinc pellets and atmospheric oxygen to generate electric current; the reaction product is zinc oxide, which is collected in a tank. In its present stage of development the 36 V fuel cell will deliver approximately 6 kWh, with a maximum power of 4 kW. The device is refueled at a zinc recycling/refueling station where zinc pellets are pumped into each cell; ZnO is pumped from the tank and replaced with KOH electrolyte. The recycling/refueling unit uses an electrolytic process to convert zinc oxide powder into zinc pellets  相似文献   
807.
808.
In article the opportunity of use strapdown inertial navigation system (SINS) on the base of fiber-optic gyroscopes and quartz accelerometers corrected from star sensors and satellite navigation equipment (SNE) for perspective interplanetary spacecrafts motion control on phases of interplanetary trajectory insertion, trajectory correction, and braking during transition to Mars orbit is investigated. Results of onboard control complex accuracy characteristics estimation are presented at the given dynamic spacecraft scheme which is taking into account the liquid oscillations in tanks and structure elements elasticity. At modelling the errors of measuring devices installation, errors of SINS initial alignment and instrumental errors of SINS sensitive elements, variation of control engines parameters were taken into account. The structure of the developed complex of imitation modelling of interplanetary spacecraft controlled motion is resulted. Estimations of active flight legs realization accuracy were received by a method of statistical modelling of spacecraft controlled motion  相似文献   
809.
810.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号