首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5856篇
  免费   10篇
  国内免费   16篇
航空   2829篇
航天技术   2026篇
综合类   189篇
航天   838篇
  2019年   35篇
  2018年   85篇
  2017年   44篇
  2016年   47篇
  2014年   109篇
  2013年   141篇
  2012年   122篇
  2011年   199篇
  2010年   140篇
  2009年   227篇
  2008年   296篇
  2007年   153篇
  2006年   126篇
  2005年   148篇
  2004年   148篇
  2003年   180篇
  2002年   203篇
  2001年   239篇
  2000年   90篇
  1999年   148篇
  1998年   174篇
  1997年   129篇
  1996年   174篇
  1995年   208篇
  1994年   165篇
  1993年   108篇
  1992年   156篇
  1991年   68篇
  1990年   59篇
  1989年   135篇
  1988年   53篇
  1987年   50篇
  1986年   57篇
  1985年   185篇
  1984年   170篇
  1983年   105篇
  1982年   153篇
  1981年   171篇
  1980年   57篇
  1979年   53篇
  1978年   47篇
  1977年   40篇
  1976年   34篇
  1975年   51篇
  1974年   45篇
  1973年   31篇
  1972年   44篇
  1971年   36篇
  1970年   33篇
  1969年   39篇
排序方式: 共有5882条查询结果,搜索用时 390 毫秒
471.
The shape of solar filaments is compared with the projection of parts of the neutral surface of the coronal magnetic field within a certain range of heights at different aspects of observation due to the rotation of the Sun. Neutral surfaces are calculated in the potential approximation from the photospheric data. The comparison shows that the material of filaments is concentrated mainly near the neutral surface of the potential field. The traces of the neutral surface section by the horizontal plane serve as polarity inversion lines (PILs) of the vertical field at the given height. In projection onto the disk, a lower edge of the filament with the intermediate barbs protruding on each side is delineated by the PIL at the low height, while an upper edge touches the high-height PIL. All material of the filament is enclosed in the space between these two lines. Although in reality the magnetic field structure near filaments differs very strongly from the potential field structure, their neutral surfaces can be similar and close, especially at low heights. This fact is probably the cause of the observed correlation. It can be used to determine the height of the upper edge of filaments above the photosphere in the case of observations only on the disk.  相似文献   
472.
A wireless sensor system for data acquisition and processing during structural and fatigue tests is considered. A prototype of wireless strain-gauge measurement system is used in fatigue tests of a utility helicopter’s main rotor hub. The setup of the test rig and software are described.  相似文献   
473.
In the paper, processes of high-energy electron beam interaction with plasma particles in a discharge channel of a stationary plasma thruster are analyzed and the results are presented.  相似文献   
474.
The presence and movement of plasma density fluctuations in the F-region of the ionosphere are studied by monitoring phase and amplitude of radio waves propagating through the region. In this paper, we have used weak scattering theory and assumed the plasma density fluctuations to behave like phase changing diffraction screen. Appropriate relations for scintillation index S4, and phase variance δ? are derived and computed for different parameters of the plasma density irregularities of the ionosphere. SROSS-C2 satellite in situ measurements of plasma density fluctuations, which provide direct information about the structure and morphology of irregularities that are responsible for scintillation of radio waves, were used first time to develop a scintillation model for low latitude. It is observed that the scintillation index S4 and phase variance δ? depends on the strength of the plasma turbulence. Finally, the results obtained from modeling are compared and discussed with the available recent results.  相似文献   
475.
476.
The Juno Waves Investigation   总被引:1,自引:0,他引:1  
Jupiter is the source of the strongest planetary radio emissions in the solar system. Variations in these emissions are symptomatic of the dynamics of Jupiter’s magnetosphere and some have been directly associated with Jupiter’s auroras. The strongest radio emissions are associated with Io’s interaction with Jupiter’s magnetic field. In addition, plasma waves are thought to play important roles in the acceleration of energetic particles in the magnetosphere, some of which impact Jupiter’s upper atmosphere generating the auroras. Since the exploration of Jupiter’s polar magnetosphere is a major objective of the Juno mission, it is appropriate that a radio and plasma wave investigation is included in Juno’s payload. This paper describes the Waves instrument and the science it is to pursue as part of the Juno mission.  相似文献   
477.
Direct measurements of the geomagnetic field have been made for more than 400 years, beginning with individual determinations of the angle between geographic and magnetic North. This was followed by the start of continuous time series of full vector measurements at geomagnetic observatories and the beginning of geomagnetic repeat stations surveys in the 19th century. In the second half of the 20th century, true global coverage with geomagnetic field measurements was accomplished by magnetometer payloads on low-Earth-orbiting satellites. This article describes the procedures and instruments for magnetic field measurements on ground and in space and covers geomagnetic observatories, repeat stations, automatic observatories, satellites and historic observations. Special emphasis is laid on the global network of geomagnetic observatories.  相似文献   
478.
Today’s space debris environment shows major concentrations of objects within distinct orbital regions for nearly all size regimes. The most critical region is found at orbital altitudes near 800 km with high declinations. Within this region many satellites are operated in so called sun-synchronous orbits (SSO). Among those, there are Earth observation, communication and weather satellites. Due to the orbital geometry in SSO, head-on encounters with relative velocities of about 15 km/s are most probable and would thus result in highly energetic collisions, which are often referred to as catastrophic collisions, leading to the complete fragmentation of the participating objects. So called feedback collisions can then be triggered by the newly generated fragments, thus leading to a further population increase in the affected orbital region. This effect is known as the Kessler syndrome.  相似文献   
479.
In this paper a linear, closed-form analysis of the buckling behavior of an orthotropic plate with elastic clamping and edge reinforcement under uniform compressive load is presented. This is a typical structural situation found in aerospace engineering for instance as stiffeners in wings or the fuselage. All governing equations are transformed in a dimensionless system using common characteristic quantities to gain good analytical access. The buckling behavior is analyzed and generic buckling diagrams are presented. The solutions show excellent agreement with results from literature and numerical analyses.The minimum bending stiffness of the edge reinforcement needed to withstand buckling is examined and a minimum stiffness criterion is presented. Furthermore an absolute minimum bending stiffness is found which is sufficient to enable the reinforcement to act as a near-rigid support for arbitrarily long plates. These criteria are of interest for optimized lightweight design of stringers and stiffeners.  相似文献   
480.
DORIS is one of the four space-geodetic techniques participating in the Global Geodetic Observing System (GGOS), particularly to maintain and disseminate the Terrestrial Reference Frame as determined by International Earth rotation and Reference frame Service (IERS). A few years ago, under the umbrella of the International Association of Geodesy, a DORIS International Service (IDS) was created in order to foster international cooperation and to provide new scientific products. This paper addresses the organizational aspects of the IDS and presents some recent DORIS scientific results. It is for the first time that, in preparation of the ITRF2008, seven Analysis Centers (AC’s) contributed to derive long-term time series of DORIS stations positions. These solutions were then combined into a homogeneous time series IDS-2 for which a precision of less than 10 mm was obtained. Orbit comparisons between the various AC’s showed an excellent agreement in the radial component, both for the SPOT satellites (e.g. 0.5–2.1 cm RMS for SPOT-2) and Envisat (0.9–2.1 cm RMS), using different software packages, models, corrections and analysis strategies. There is now a wide international participation within IDS that should lead to future improvements in DORIS analysis strategies and DORIS-derived geodetic products.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号