首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5856篇
  免费   10篇
  国内免费   16篇
航空   2829篇
航天技术   2026篇
综合类   189篇
航天   838篇
  2019年   35篇
  2018年   85篇
  2017年   44篇
  2016年   47篇
  2014年   109篇
  2013年   141篇
  2012年   122篇
  2011年   199篇
  2010年   140篇
  2009年   227篇
  2008年   296篇
  2007年   153篇
  2006年   126篇
  2005年   148篇
  2004年   148篇
  2003年   180篇
  2002年   203篇
  2001年   239篇
  2000年   90篇
  1999年   148篇
  1998年   174篇
  1997年   129篇
  1996年   174篇
  1995年   208篇
  1994年   165篇
  1993年   108篇
  1992年   156篇
  1991年   68篇
  1990年   59篇
  1989年   135篇
  1988年   53篇
  1987年   50篇
  1986年   57篇
  1985年   185篇
  1984年   170篇
  1983年   105篇
  1982年   153篇
  1981年   171篇
  1980年   57篇
  1979年   53篇
  1978年   47篇
  1977年   40篇
  1976年   34篇
  1975年   51篇
  1974年   45篇
  1973年   31篇
  1972年   44篇
  1971年   36篇
  1970年   33篇
  1969年   39篇
排序方式: 共有5882条查询结果,搜索用时 593 毫秒
441.
Le Traon  P.Y.  Hernandez  F.  Rio  M.H.  Davidson  F. 《Space Science Reviews》2003,108(1-2):239-249
With a precise geoid, GOCE will allow an estimation of absolute dynamic topography from altimetry. The projected benefits to operational oceanography and its applications are analyzed herein. After a brief overview of operational oceanography, we explain how the new geoids will be used in the future to improve real time altimeter products and to better constrain modelling and data assimilation systems. A significant impact is expected both for mesoscale (e.g. better estimations and forecasts of currents for pollution monitoring, marine safety, offshore industry) and climate (better initialization of coupled ocean/atmosphere models) applications. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
442.
Cairns  Iver H.  Knock  S.A.  Robinson  P.A.  Kuncic  Z. 《Space Science Reviews》2003,107(1-2):27-34
Recent data and theory for type II solar radio bursts are reviewed, focusing on a recent analytic quantitative theory for interplanetary type II bursts. The theory addresses electron reflection and acceleration at the type II shock, formation of electron beams in the foreshock, and generation of Langmuir waves and the type II radiation there. The theory's predictions as functions of the shock and plasma parameters are summarized and discussed in terms of space weather events. The theory is consistent with available data, has explanations for radio-loud/quiet coronal mass ejections (CMEs) and why type IIs are bursty, and can account for empirical correlations between type IIs, CMEs, and interplanetary disturbances. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
443.
Neugebauer  M.  Steinberg  J.T.  Tokar  R.L.  Barraclough  B.L.  Dors  E.E.  Wiens  R.C.  Gingerich  D.E.  Luckey  D.  Whiteaker  D.B. 《Space Science Reviews》2003,105(3-4):661-679
Some of the objectives of the Genesis mission require the separate collection of solar wind originating in different types of solar sources. Measurements of the solar wind protons, alpha particles, and electrons are used on-board the spacecraft to determine whether the solar-wind source is most likely a coronal hole, interstream flow, or a coronal mass ejection. A simple fuzzy logic scheme operating on measurements of the proton temperature, the alpha-particle abundance, and the presence of bidirectional streaming of suprathermal electrons was developed for this purpose. Additional requirements on the algorithm include the ability to identify the passage of forward shocks, reasonable levels of hysteresis and persistence, and the ability to modify the algorithm by changes in stored constants rather than changes in the software. After a few minor adjustments, the algorithm performed well during the initial portion of the mission. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
444.
We present results derived from the analysis of an equatorial streamer structure as observed by the UVCS instrument aboard SOHO. From observations of the H I Lyα and Lyβ lines we infer the density and temperature of the plasma. We develop a preliminary axisymmetric, magnetostatic model of the corona which includes the effects of gas pressure gradients on the magnetic structure. We infer a coronal plasma β > 1 in the closed field regions and near the cusp of the streamer. We add to the model a parallel velocity field assuming mass flux conservation along magnetic flux tubes. We then compute the Lyα emissivity and the line-of-sight integrals to obtain images of Lyα intensity, taking into account projection effects and Doppler dimming. The images we obtain from this preliminary model are in good general agreement with the UVCS observations, both qualitatively and quantitatively. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
445.
The Cassini visual and infrared mapping spectrometer (VIMS) investigation is a multidisciplinary study of the Saturnian system. Visual and near-infrared imaging spectroscopy and high-speed spectrophotometry are the observational techniques. The scope of the investigation includes the rings, the surfaces of the icy satellites and Titan, and the atmospheres of Saturn and Titan. In this paper, we will elucidate the major scientific and measurement goals of the investigation, the major characteristics of the Cassini VIMS instrument, the instrument calibration, and operation, and the results of the recent Cassini flybys of Venus and the Earth–Moon system.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
446.
The Cassini-Huygens Cosmic Dust Analyzer (CDA) is intended to provide direct observations of dust grains with masses between 10−19 and 10−9 kg in interplanetary space and in the jovian and saturnian systems, to investigate their physical, chemical and dynamical properties as functions of the distances to the Sun, to Jupiter and to Saturn and its satellites and rings, to study their interaction with the saturnian rings, satellites and magnetosphere. Chemical composition of interplanetary meteoroids will be compared with asteroidal and cometary dust, as well as with Saturn dust, ejecta from rings and satellites. Ring and satellites phenomena which might be effects of meteoroid impacts will be compared with the interplanetary dust environment. Electrical charges of particulate matter in the magnetosphere and its consequences will be studied, e.g. the effects of the ambient plasma and the magnetic field on the trajectories of dust particles as well as fragmentation of particles due to electrostatic disruption.The investigation will be performed with an instrument that measures the mass, composition, electric charge, speed, and flight direction of individual dust particles. It is a highly reliable and versatile instrument with a mass sensitivity 106 times higher than that of the Pioneer 10 and 11 dust detectors which measured dust in the saturnian system. The Cosmic Dust Analyzer has significant inheritance from former space instrumentation developed for the VEGA, Giotto, Galileo, and Ulysses missions. It will reliably measure impacts from as low as 1 impact per month up to 104 impacts per second. The instrument weighs 17 kg and consumes 12 W, the integrated time-of-flight mass spectrometer has a mass resolution of up to 50. The nominal data transmission rate is 524 bits/s and varies between 50 and 4192 bps.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
447.
The Cassini Imaging Science Subsystem (ISS) is the highest-resolution two-dimensional imaging device on the Cassini Orbiter and has been designed for investigations of the bodies and phenomena found within the Saturnian planetary system. It consists of two framing cameras: a narrow angle, reflecting telescope with a 2-m focal length and a square field of view (FOV) 0.35 across, and a wide-angle refractor with a 0.2-m focal length and a FOV 3.5 across. At the heart of each camera is a charged coupled device (CCD) detector consisting of a 1024 square array of pixels, each 12 μ on a side. The data system allows many options for data collection, including choices for on-chip summing, rapid imaging and data compression. Each camera is outfitted with a large number of spectral filters which, taken together, span the electromagnetic spectrum from 200 to 1100 nm. These were chosen to address a multitude of Saturn-system scientific objectives: sounding the three-dimensional cloud structure and meteorology of the Saturn and Titan atmospheres, capturing lightning on both bodies, imaging the surfaces of Saturn’s many icy satellites, determining the structure of its enormous ring system, searching for previously undiscovered Saturnian moons (within and exterior to the rings), peering through the hazy Titan atmosphere to its yet-unexplored surface, and in general searching for temporal variability throughout the system on a variety of time scales. The ISS is also the optical navigation instrument for the Cassini mission. We describe here the capabilities and characteristics of the Cassini ISS, determined from both ground calibration data and in-flight data taken during cruise, and the Saturn-system investigations that will be conducted with it. At the time of writing, Cassini is approaching Saturn and the images returned to Earth thus far are both breathtaking and promising.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
448.
Ground penetrating radar VIY-2   总被引:2,自引:0,他引:2  
VIY-2 ground penetrating radar (GPR) with unique sounding possibilities and use simplicity is presented at this paper. VIY-2 GPR combines all units (synchronizer, transmitting and receiving modules, powering, and antenna system) into single case. The VIY-2 GPR communicates with computer via standard interface RS232 or USB1.0. Technical solutions utilized by the VIY-2 GPR reduce deployment time and simplify surveying process. The VIY-2 GPR design features and its components interaction are considered at this paper. Some field results are also presented here. The VIY-2 GPR design concept allows reducing the data acquisition time,, optimizing the time-varying gain control function, applying depth-stacking dependence, controlling the surveying window position and interference reducing by pulse repetition frequency randomizing.  相似文献   
449.
Order of magnitude variations in relative elemental abundances are observed in the solar corona and solar wind. The instruments aboard SOHO make it possible to explore these variations in detail to determine whether they arise near the solar surface or higher in the corona. A substantial enhancement of low First Ionization Potential (FIP) elements relative to high FIP elements is often seen in both the corona and the solar wind, and that must arise in the chromosphere. Several theoretical models have been put forward to account for the FIP effect, but as yet even the basic physical mechanism responsible remains an open question. Evidence for gravitational settling is also found at larger heights in quiescent streamers. The question is why the heavier elements don't settle out completely. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
450.
2001 Mars Odyssey Mission Summary   总被引:1,自引:0,他引:1  
Saunders  R.S.  Arvidson  R.E.  Badhwar  G.D.  Boynton  W.V.  Christensen  P.R.  Cucinotta  F.A.  Feldman  W.C.  Gibbs  R.G.  Kloss  C.  Landano  M.R.  Mase  R.A.  McSmith  G.W.  Meyer  M.A.  Mitrofanov  I.G.  Pace  G.D.  Plaut  J.J.  Sidney  W.P.  Spencer  D.A.  Thompson  T.W.  Zeitlin  C.J. 《Space Science Reviews》2004,110(1-2):1-36
The 2001 Mars Odyssey spacecraft, now in orbit at Mars, will observe the Martian surface at infrared and visible wavelengths to determine surface mineralogy and morphology, acquire global gamma ray and neutron observations for a full Martian year, and study the Mars radiation environment from orbit. The science objectives of this mission are to: (1) globally map the elemental composition of the surface, (2) determine the abundance of hydrogen in the shallow subsurface, (3) acquire high spatial and spectral resolution images of the surface mineralogy, (4) provide information on the morphology of the surface, and (5) characterize the Martian near-space radiation environment as related to radiation-induced risk to human explorers. To accomplish these objectives, the 2001 Mars Odyssey science payload includes a Gamma Ray Spectrometer (GRS), a multi-spectral Thermal Emission Imaging System (THEMIS), and a radiation detector, the Martian Radiation Environment Experiment (MARIE). THEMIS and MARIE are mounted on the spacecraft with THEMIS pointed at nadir. GRS is a suite of three instruments: a Gamma Subsystem (GSS), a Neutron Spectrometer (NS) and a High-Energy Neutron Detector (HEND). The HEND and NS instruments are mounted on the spacecraft body while the GSS is on a 6-m boom. Some science data were collected during the cruise and aerobraking phases of the mission before the prime mission started. THEMIS acquired infrared and visible images of the Earth-Moon system and of the southern hemisphere of Mars. MARIE monitored the radiation environment during cruise. The GRS collected calibration data during cruise and aerobraking. Early GRS observations in Mars orbit indicated a hydrogen-rich layer in the upper meter of the subsurface in the Southern Hemisphere. Also, atmospheric densities, scale heights, temperatures, and pressures were observed by spacecraft accelerometers during aerobraking as the spacecraft skimmed the upper portions of the Martian atmosphere. This provided the first in-situ evidence of winter polar warming in the Mars upper atmosphere. The prime mission for 2001 Mars Odyssey began in February 2002 and will continue until August 2004. During this prime mission, the 2001 Mars Odyssey spacecraft will also provide radio relays for the National Aeronautics and Space Administration (NASA) and European landers in early 2004. Science data from 2001 Mars Odyssey instruments will be provided to the science community via NASA’s Planetary Data System (PDS). The first PDS release of Odyssey data was in October 2002; subsequent releases occur every 3 months.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号