首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5856篇
  免费   10篇
  国内免费   16篇
航空   2829篇
航天技术   2026篇
综合类   189篇
航天   838篇
  2019年   35篇
  2018年   85篇
  2017年   44篇
  2016年   47篇
  2014年   109篇
  2013年   141篇
  2012年   122篇
  2011年   199篇
  2010年   140篇
  2009年   227篇
  2008年   296篇
  2007年   153篇
  2006年   126篇
  2005年   148篇
  2004年   148篇
  2003年   180篇
  2002年   203篇
  2001年   239篇
  2000年   90篇
  1999年   148篇
  1998年   174篇
  1997年   129篇
  1996年   174篇
  1995年   208篇
  1994年   165篇
  1993年   108篇
  1992年   156篇
  1991年   68篇
  1990年   59篇
  1989年   135篇
  1988年   53篇
  1987年   50篇
  1986年   57篇
  1985年   185篇
  1984年   170篇
  1983年   105篇
  1982年   153篇
  1981年   171篇
  1980年   57篇
  1979年   53篇
  1978年   47篇
  1977年   40篇
  1976年   34篇
  1975年   51篇
  1974年   45篇
  1973年   31篇
  1972年   44篇
  1971年   36篇
  1970年   33篇
  1969年   39篇
排序方式: 共有5882条查询结果,搜索用时 22 毫秒
321.
Halophilic archaea are of interest to astrobiology due to their survival capabilities in desiccated and high salt environments. The detection of remnants of salty pools on Mars stimulated investigations into the response of haloarchaea to martian conditions. Natronorubrum sp. strain HG-1 is an extremely halophilic archaeon with unusual metabolic pathways, growing on acetate and stimulated by tetrathionate. We exposed Natronorubrum strain HG-1 to ultraviolet (UV) radiation, similar to levels currently prevalent on Mars. In addition, the effects of low temperature (4, −20, and −80 °C), desiccation, and exposure to a Mars soil analogue from the Atacama desert on the viability of Natronorubrum strain HG-1 cultures were investigated. The results show that Natronorubrum strain HG-1 cannot survive for more than several hours when exposed to UV radiation equivalent to that at the martian equator. Even when protected from UV radiation, viability is impaired by a combination of desiccation and low temperature. Desiccating Natronorubrum strain HG-1 cells when mixed with a Mars soil analogue impaired growth of the culture to below the detection limit. Overall, we conclude that Natronorubrum strain HG-1 cannot survive the environment currently present on Mars. Since other halophilic microorganisms were reported to survive simulated martian conditions, our results imply that survival capabilities are not necessarily shared between phylogenetically related species.  相似文献   
322.
The low background values at nighttime of the mesospheric hydroxyl (OH) radical make it easier to single out the atmospheric response to the external solar forcing in Polar Regions. Because of the short lifetime of HOx, it is possible to follow the trails of Solar Energetic Particle (SEP) events in the terrestrial atmosphere, as shown by Storini and Damiani (2008). The sensitivity of this indicator makes discernible not only extreme particle events with a flux peak of several thousand pfu [1 pfu = 1 particle/(cm2 s sr)] at energies >10 MeV, but also those with lower flux up to about 300 pfu. Using data from the Microwave Limb Sounder (MLS) on board the EOS AURA satellite, we examined the correlation of OH abundance vs. solar proton flux for almost all the identified SEP events spanning from November 2004 to December 2006 (later on no more SEP events occurred during Solar Cycle no. 23). The channels at energies greater than 5 MeV and 10 MeV showed the best correlation values (r ∼ 0.90–0.95) at altitudes around 65–75 km whereas, as expected, the most energetic channels were most highly correlated at lower altitudes. Therefore, it is reasonably possible to estimate the solar proton flux from values of mesospheric OH (and viceversa) and it could be useful in studying periods with gaps in the records of solar particles.  相似文献   
323.
We are developing fast photon-counter instruments to study the rapid variability of astrophysical sources by time tagging photon arrival times with unprecedented accuracy, making use of a Rubidium clock and GPS receiver. The first realization of such optical photon-counters, dubbed AquEYE (the Asiago Quantum Eye), was mounted in 2008 at the 182 cm Copernicus Observatory in Asiago. AquEYE observed the Crab pulsar several times and collected data of extraordinary quality that allowed us to perform accurate optical timing of the Crab pulsar and to study the pulse shape stability on a timescale from days to years with an excellent definition. Our results reinforce the evidence for decadal stability of the inclination angle between the spin and magnetic axis of the Crab pulsar. Future realizations of our instrument will make use of the Galileo Global Navigation Satellite System (GNSS) time signal.  相似文献   
324.
The Global Positioning System (GPS) Radio Occultation (RO) technique has global coverage and is capable of generating high vertical resolution temperature profiles of the upper troposphere and lower stratosphere with sub-Kelvin accuracy and long-term stability, regardless of weather conditions. In this work, we take advantage of the anomalously high density of occultation events at the eastern side of the highest Andes Mountains during the initial mission months of COSMIC (Constellation Observing System for Meteorology, Ionosphere and Climate). This region is well-known for its high wave activity. We choose to study two pairs of GPS RO, both containing two occultations that occurred close in time and space. One pair shows significant differences between both temperature profiles. Numerical simulations with a mesoscale model were performed, in order to understand this discrepancy. It is attributed to the presence of a horizontal inhomogeneous structure caused by gravity waves.  相似文献   
325.
In this paper, Science Operations Planning Expertise (SOPE) is defined as the expertise that is held by people who have the two following qualities. First they have both theoretical and practical experience in operations planning, in general, and in space science operations planning in particular. Second, they can be used, on request and at least, to provide with advice the teams that design and implement science operations systems in order to optimise the performance and productivity of the mission. However, the relevance and use of such SOPE early on during the Mission Design Phase (MDP) is not sufficiently recognised. As a result, science operations planning is often neglected or poorly assessed during the mission definition phases. This can result in mission architectures that are not optimum in terms of cost and scientific returns, particularly for missions that require a significant amount of science operations planning. Consequently, science operations planning difficulties and cost underestimations are often realised only when it is too late to design and implement the most appropriate solutions. In addition, higher costs can potentially reduce both the number of new missions and the chances of existing ones to be extended. Moreover, the quality, and subsequently efficiency, of SOPE can vary greatly. This is why we also believe that the best possible type of SOPE requires a structure similar to the ones of existing bodies of expertise dedicated to the data processing such as the International Planetary Data Alliance (IPDA), the Space Physics Archive Search and Extract (SPASE) or the Planetary Data System (PDS). Indeed, this is the only way of efficiently identifying science operations planning issues and their solutions as well as of keeping track of them in order to apply them to new missions. Therefore, this paper advocates for the need to allocate resources in order to both optimise the use of SOPE early on during the MDP and to perform, at least, a feasibility study of such a more structured SOPE.  相似文献   
326.
The paper presents the research results of the effect of a capacitor energy storage device configuration on the specific characteristics of advanced modern propulsion systems based on the ablative pulsed plasma thrusters (APPT). These thrusters are designed to perform specific tasks within the small spacecrafts with the onboard power capacity up to 200 W.  相似文献   
327.
Solar modulations of galactic cosmic ray (GCR) intensity contain a wealth of information about their transport in the heliosphere. To extract this information from the data one studies the dependence of the observed modulations on the mean energy of response of detectors providing data for the analyses. There is a great deal of confusion about the detector energy response to GCR spectrum in the literature. We present a preliminary report on the computations of the mean energy of response for the Climax neutron monitor (CL/NM) and IMP 8 cosmic ray nuclear composition instrument to GCR protons for 1973–1998, covering the solar cycles 21 and 22. We find that for penetrating proton channel on IMP 8 the mean energy changes by a factor of over two whereas for the neutron monitor the change is only 21%. However, the corresponding change for the computed modulation function is a factor of about 3.5.  相似文献   
328.
Adequate representations of diverse dynamical processes in general circulation models (GCM) are necessary to obtain reliable simulations of the present and the future. The parameterization of orographic gravity wave drag (GWD) is one of the critical components of GCM. It is therefore convenient to evaluate whether standard orographic GWD parameterizations are appropriate. One alternative is to study the generation of gravity waves (GW) with horizontal resolutions that are higher than those used in current GCM simulations. Here we assess the seasonal pattern of topographic GW momentum flux (GWMF) generation for the late 20th and 21st centuries in a downscaling using the Rossby Centre regional atmospheric model under the Intergovernmental Panel on Climate Change A1B emission conditions. We focus on one of the world’s strongest extra-tropical GW zones, the Andes Mountains at mid-latitudes in the Southern Hemisphere. The presence of two GCM sub-grid scale structures locally contributing to GWMF (one positive and one negative) is found to the East of the mountains. For the late 21st century the strength of these structures during the GW high season increases around 23% with respect to the late 20th century, but the GWMF average over GCM grid cell scales remains negative and nearly constant around −0.015 Pa. This constitutes a steady significant contribution during GW high season, which is not related to the GWMF released by individual sporadic strong GW events. This characteristic agrees with the fact that no statistically significant variation in GWMF at source level has been observed in recent GCM simulations of atmospheric change induced by increases in greenhouse gases.  相似文献   
329.
Tracking multiple objects with particle filtering   总被引:8,自引:0,他引:8  
We address the problem of multitarget tracking (MTT) encountered in many situations in signal or image processing. We consider stochastic dynamic systems detected by observation processes. The difficulty lies in the fact that the estimation of the states requires the assignment of the observations to the multiple targets. We propose an extension of the classical particle filter where the stochastic vector of assignment is estimated by a Gibbs sampler. This algorithm is used to estimate the trajectories of multiple targets from their noisy bearings, thus showing its ability to solve the data association problem. Moreover this algorithm is easily extended to multireceiver observations where the receivers can produce measurements of various nature with different frequencies.  相似文献   
330.
Optimal speckle reduction in polarimetric SAR imagery   总被引:9,自引:0,他引:9  
Speckle is a major cause of degradation in synthetic aperture radar (SAR) imagery. With the availability of fully polarimetric SAR data, it is possible to use the three complex elements (HH, HV, VV) of the polarimetric scattering matrix to reduce speckle. The optimal method for combining the elements of the scattering matrix to minimize image speckle is derived, and the solution is shown to be a polarimetric whitening filter (PWF). A simulation of spatially correlated, K-distributed, fully polarimetric clutter is then used to compare the PWF with other, suboptimal speckle-reduction methods. Target detection performance of the PWF, span, and single-channel |HH|2 detectors is compared with that of the optimal polarimetric detector (OPD). A novel, constant-false-alarm-rate (CFAR) detector (the adaptive PWF) is as a simple alternative to the OPD for detecting targets in clutter. This algorithm estimates the polarization covariance of the clutter, uses the covariance to construct the minimum-speckle image, and then tests for the presence of a target. An exact theoretical analysis of the adaptive PWF is presented; the algorithm is shown to have detection performance comparable with that of the OPD  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号