首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3148篇
  免费   8篇
  国内免费   12篇
航空   1668篇
航天技术   1080篇
综合类   9篇
航天   411篇
  2018年   37篇
  2017年   19篇
  2016年   22篇
  2014年   54篇
  2013年   78篇
  2012年   59篇
  2011年   105篇
  2010年   82篇
  2009年   112篇
  2008年   175篇
  2007年   90篇
  2006年   60篇
  2005年   77篇
  2004年   78篇
  2003年   100篇
  2002年   52篇
  2001年   99篇
  2000年   48篇
  1999年   79篇
  1998年   93篇
  1997年   73篇
  1996年   91篇
  1995年   124篇
  1994年   98篇
  1993年   66篇
  1992年   101篇
  1991年   42篇
  1990年   36篇
  1989年   87篇
  1988年   33篇
  1987年   28篇
  1986年   32篇
  1985年   87篇
  1984年   91篇
  1983年   59篇
  1982年   82篇
  1981年   92篇
  1980年   34篇
  1979年   42篇
  1978年   32篇
  1977年   22篇
  1976年   21篇
  1975年   37篇
  1974年   24篇
  1973年   18篇
  1972年   29篇
  1969年   17篇
  1968年   16篇
  1967年   20篇
  1966年   16篇
排序方式: 共有3168条查询结果,搜索用时 15 毫秒
771.
Magnetic clouds are the interplanetary manifestation of coronal mass ejections, which are transient expulsions of major quantities of magnetized plasma, from the Sun toward the heliosphere. The magnetic flux and helicity are two key physical magnitudes to track solar structures from the photosphere-corona to the interplanetary medium. To determine the content of flux and helicity in magnetic clouds, we have to know their 3D structure. However, since spacecrafts register data along a unique direction, several aspects of their global configuration cannot be observed. We present a method to estimate the magnetic flux and the magnetic helicity per unit length in magnetic clouds, directly from in situ magnetic observations, assuming only a cylindrical symmetry for the magnetic field configuration in the observed cross-section of the cloud. We select a set of 20 magnetic clouds observed by the spacecraft Wind and estimate their magnetic flux and their helicity per unit length. We compare the results obtained from our direct method with those obtained under the assumption of a helical linear force-free field. This direct method improves previous estimations of helicity in clouds.  相似文献   
772.
773.
Due to the high costs of commercial monitoring instruments, a portable sun photometer was developed at INPE/CRN laboratories, operating in four bands, with two bands in the visible spectrum and two in near infrared. The instrument calibration process is performed by applying the classical Langley method. Application of the Langley’s methodology requires a site with high optical stability during the measurements, which is usually found in high altitudes. However, far from being an ideal site, Harrison et al. (1994) report success with applying the Langley method to some data for a site in Boulder, Colorado. Recently, Liu et al. (2011) show that low elevation sites, far away from urban and industrial centers can provide a stable optical depth, similar to high altitudes. In this study we investigated the feasibility of applying the methodology in the semiarid region of northeastern Brazil, far away from pollution areas with low altitudes, for sun photometer calibration. We investigated optical depth stability using two periods of measurements in the year during dry season in austral summer. The first one was in December when the native vegetation naturally dries, losing all its leaves and the second one was in September in the middle of the dry season when the vegetation is still with leaves. The data were distributed during four days in December 2012 and four days in September 2013 totaling eleven half days of collections between mornings and afternoons and by means of fitted line to the data V0 values were found. Despite the high correlation between the collected data and the fitted line, the study showed a variation between the values of V0 greater than allowed for sun photometer calibration. The lowest V0 variation reached in this experiment with values lower than 3% for the bands 500, 670 and 870 nm are displayed in tables. The results indicate that the site needs to be better characterized with studies in more favorable periods, soon after the rainy season.  相似文献   
774.
Due to high relative velocities, collisions of spacecraft in orbit with Space Debris (SD) or Micrometeoroids (MM) can lead to payload degradation, anomalies as well as failures in spacecraft operation, or even loss of mission. Flux models and impact risk assessment tools, such as MASTER (Meteoroid and Space Debris Terrestrial Environment Reference) or ORDEM (Orbital Debris Engineering Model), and ESABASE2 or BUMPER II are used to analyse mission risk associated with these hazards. Validation of flux models is based on measured data. Currently, as most of the SD and MM objects are too small (millimeter down to micron sized) for ground-based observations (e.g. radar, optical), the only available data for model validation is based upon retrieved hardware investigations e.g. Long Duration Exposure Facility (LDEF), Hubble Space Telescope (HST), European Retrievable Carrier (EURECA). Since existing data sets are insufficient, further in-situ experimental investigation of the SD and MM populations are required. This paper provides an overview and assessment of existing and planned SD and MM impact detectors. The detection area of the described detectors is too small to adequately provide the missing data sets. Therefore an innovative detection concept is proposed that utilises existing spacecraft components for detection purposes. In general, solar panels of a spacecraft provide a large area that can be utilised for in-situ impact detection. By using this method on several spacecraft in different orbits the detection area can be increased significantly and allow the detection of SD and MM objects with diameters as low as 100 μm. The design of the detector is based on damage equations from HST and EURECA solar panels. An extensive investigation of those panels was performed by ESA and is summarized within this paper. Furthermore, an estimate of the expected sensitivity of the patented detector concept as well as examples for its implementation into large and small spacecraft are presented.  相似文献   
775.
For the last six decades the neutron monitors have provided a continuous string of very reliable data to the heliophysics community. Although neutron monitors are not the primary source of data for the galactic cosmic rays, these data serve as a baseline reference for the data collected by the detectors on board the satellites and deep space probes, far away from earth orbit. The pressure corrected hourly data are available from the World Data Centers. These data have been used to derive deep insights pertaining to the electromagnetic states of the heliosphere and the modes of transport of energetic charged particles in the tangled interplanetary magnetic fields. We present evidence that some of the high latitude neutron monitors are undergoing long-term drifts in their baselines. In particular, we argue that there is no physical basis to justify the observed long-term downward trend in the baseline of the South Pole neutron monitor. The real reason may have to do with its maintenance at a distant location with challenging logistics and an improper normalization of its data after the 26 months break in the 1970s.  相似文献   
776.
The communications link and system aspects of active phased arrays that are used in multiple-beam satellite systems are assessed through measurements and analysis. Three link parameters are investigated and their effects on the overall carrier-to-interference ratio (CIR) are quantified. The first parameter is the intermodulation components that are generated at the nonlinear amplifier outputs and contribute to well-formed interference in the far-field radiation of the array. The second is the bit-error ratio (BER) degradation due to the multi-carrier operation of the active array. Measurement results are shown to demonstrate this effect. The third link parameter is the cochannel interference caused by frequency reuse in multiple-beam systems. The paper starts by reviewing early developments of phased arrays for multiple-beam satellite communications applications. A key component in these developments is the modular monolithic microwave integrated circuit (MMIC) beam-forming matrices that generate a number of simultaneous and independently digitally controlled beams  相似文献   
777.
Optical oxygen sensors are mainly based on the principle of luminescence quenching. In contrast to arready existing intensity-based systems, the measurement of the luminescence lifetime provides certain advantages, such as insensitivity to photobleaching or leaching of the dye, or changes in the intensity of excitation light. This facilitates the use of simple optical systems or optical fibres. A new family of oxygen-sensitive dyes, the porphyrin-ketones, has been introduced, which exhibits favorable spectral properties and decay times in the order of tens and hundreds of microseconds. This allows the use of simple optoelectronic circuitry and low-cost processing electronics. An optical oxygen sensor module has been developed with the dimensions of only 120 x 60 x 30 mm. The prototype is based on the measurement of the decay time of the luminophore by measuring the phase shift between the square-wave excitation and the detected square-wave of the emission coming from the sensor. The instrument is based on semiconductor devices (light-emitting diodes, photodiodes) and may be used for the detection of oxygen in gaseous or liquid samples. The measurement range of the device is from 0 to 200 hPa oxygen partial pressure with a resolution of < 1 hPa over the whole measurement range. The overall measurement accuracy of < +/- 1 hPa has been obtained for periods of 24 h of continuous measurement in a thermostatted environment. The sensor response times t90 are typically < 1 s for gases and 0.5 to 5 min for liquid samples.  相似文献   
778.
The sporangiophores of the zygomycete fungus Phycomyces blakesleeanus contain octahedral crystals with diameters of up to 5 micrometers in their vacuole. The crystals are associated with the intracellular membrane system. In tilted or horizontally placed sporangiophores, the crystals sediment to the respective lower face of the vacuole with a velocity of up to 100 micrometers per minute. The sedimentation is completed within about 2 minutes, well within the latency period for the negative gravitropic response of Phycomyces. Crystal-lacking mutant strains display a smaller maximal bending angle and a reduced gravitropic bending rate in comparison to the wild type. We therefore conclude that the crystals serve as statoliths for gravitropism in Phycomyces.  相似文献   
779.
ABSTRACT

Shadows have long been a challenging topic for computer vision. This challenge is made even harder when we assume that the camera is moving, as many existing shadow detection techniques require the creation and maintenance of a background model. This article explores the problem of shadow modelling from a moving viewpoint (assumed to be a robotic platform) through comparing shadow-variant and shadow-invariant image features — primarily color, texture and edge-based features. These features are then embedded in a segmentation pipeline that provides predictions on shadow status, using minimal temporal context. We also release a public dataset of shadow-related image sequences, to help other researchers further develop shadow detection methods and to enable benchmarking of techniques.  相似文献   
780.
The ionospheric scintillation, generated by the ionospheric plasma irregularities, affects the radio signals that pass through it. Their effects are widely studied in the literature with two different approaches. The first one deals with the use of radio signals to study and understand the morphology of this phenomenon, while the second one seeks to understand and model how much this phenomenon interferes in the radio signals and consequently in the services to which these systems work. The interest of several areas, particularly to those that are life critical, has increased using the concept of satellite multi-constellation, which consists of receiving, processing and using data from different navigation and positioning systems. Although there is a vast literature analyzing the effects of ionospheric scintillation on satellite navigation systems, the number of studies using signals received from the Russian satellite positioning system (named GLONASS) is still very rare. This work presents for the first time in the Brazilian low-latitude sector a statistical analysis of ionospheric scintillation data for all levels of magnetic activities obtained by a set of scintillation monitors that receive signals from the GLONASS system. In this study, data collected from four stations were used in the analysis; Fortaleza, Presidente Prudente, São José dos Campos and Porto Alegre. The GLONASS L-band signals were analyzed for the period from December 21, 2012 to June 20, 2016, which includes the peak of the solar cycle 24 that occurred in 2014. The main characteristics of scintillation presented in this study include: (1) the statistical evaluation of seasonal and solar activity, showing the chances that an user on similar geophysical conditions may be susceptible to the effects of ionospheric scintillation; (2) a temporal analysis based on the local time distribution of scintillation at different seasons and intensity levels; and (3) the evaluation of number of simultaneously affected channels and its effects on the dilution of precision (DOP) for GNSS users are also presented in order to alert the timetables in which navigation will be most susceptible to such effects, as well as statistics on simultaneously affected channels. Relevant results about these statistical characteristics of scintillation are presented and analyzed providing relevant information about availability of a navigation system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号