首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5632篇
  免费   27篇
  国内免费   23篇
航空   2805篇
航天技术   1957篇
综合类   13篇
航天   907篇
  2021年   35篇
  2019年   33篇
  2018年   78篇
  2017年   55篇
  2016年   53篇
  2015年   36篇
  2014年   108篇
  2013年   148篇
  2012年   131篇
  2011年   194篇
  2010年   136篇
  2009年   209篇
  2008年   280篇
  2007年   153篇
  2006年   118篇
  2005年   150篇
  2004年   143篇
  2003年   172篇
  2002年   112篇
  2001年   179篇
  2000年   97篇
  1999年   133篇
  1998年   155篇
  1997年   116篇
  1996年   166篇
  1995年   202篇
  1994年   186篇
  1993年   105篇
  1992年   145篇
  1991年   68篇
  1990年   60篇
  1989年   142篇
  1988年   54篇
  1987年   51篇
  1986年   61篇
  1985年   167篇
  1984年   168篇
  1983年   111篇
  1982年   136篇
  1981年   172篇
  1980年   50篇
  1979年   60篇
  1978年   57篇
  1977年   38篇
  1975年   56篇
  1974年   44篇
  1973年   36篇
  1972年   47篇
  1969年   35篇
  1967年   36篇
排序方式: 共有5682条查询结果,搜索用时 359 毫秒
651.
Under gravistimulation, dark-grown protonemata of Pottia intermedia revealed negative gravitropism with a growth rate of approximately 28 μm·h−1 at room temperature (20 °C). In 7 days, the protonema formed a bundle of vertically oriented filaments. At an elevated temperature (30 °C), bundles of vertically growing filaments were also formed. However, both filament growth rate and amplitude of the gravicurvature were reduced. Red light (RL) irradiation induced a positive phototropism of most apical protonemal cells at 20 °C. In a following period of darkness, approximately two-thirds of such cells began to grow upward again, recovering their negative gravitropism. RL irradiation at the elevated temperature caused a partial increase in the number of protonemal cells with negative phototropism, but the protonemata did not exhibit negative gravitropism after transfer to darkness. The negative gravitropic reaction was renewed only when protonemata were placed at 20 °C. A dramatic decrease in starch amount in protonemal apical cells, which are sensitive to both gravity and light, occurred at the higher temperature. Such a decrease may be one of the reasons for the inhibition of the protonemal gravireaction at the higher temperature. The observation has a bearing on the starch-statolith theory.  相似文献   
652.
In July and October 1995, a large-scale airborne SAR experiment was conducted in the Yuma Proving Ground, Yuma, Arizona, to investigate ground penetration radar phenomenology and buried target detection. This paper describes the Yuma experiment and measurement results for many tactical, utility, and environmental targets deployed in the test  相似文献   
653.
A new structure for the separation and tracking of uncorrelated sources through the use of a 2-dimensional adaptive array is proposed and investigated. The structure consists of a matrix preprocessing beamformer designed to result in outputs which are due to individual sources in the steady state. The preprocessing weights of the beamformer are calculated using the estimated locations of the sources and are updated periodically. Continuous estimation of the source locations is accomplished by using the beamformer outputs to adaptively eliminate correlated components in a reference element of the array while the structure proposed may have rather erratic initial convergence behavior, it has the advantages of being simple to be implemented, fast in tracking, and well suited for applications in mobile communication systems for increasing system capacity  相似文献   
654.
This paper is intended as a critical review of current ideas concerning the mechanisms responsible for the geomagnetic storm.The dynamical theory of the geomagnetic storm phenomenon is formulated as a problem in elasticity. The observed variations in the field are the strains produced by particle stresses exerted by gases in interplanetary space, by gases enmeshed in the field, and by the gases in the ionosphere. The stresses exerted by interplanetary gases are principally inward, resulting in the initial phase increase of the horizontal component. The stresses exerted by gases enmeshed in the field are principally outward, resulting in the main phase decrease of the horizontal component. The transient sudden commencement is a hydromagnetic wave phenomenon.The main phase is most simply explained by the shock heating of the ions to kev energies at 3 – 5 R E during the active phase of the storm. The recovery follows then from charge exchange with the ambient neutral hydrogen. The predicted more rapid recovery at sunspot minimum has been verified observationally.This work was supported by the National Aeronautics and Space Administration under grant NASA-NsG-96-60.  相似文献   
655.
656.
Functional analysis is a methodology for analyzing the mission and performance requirements of a system, and translating them into discrete activities or tasks which must be performed by the system. Determination of the system's functionality is the first step in obtaining a conceptual view of a system that is to be designed. The methodology for conducting functional analysis is developed, some of the tools used to support the activity are described, including examples to help solidify the concepts presented  相似文献   
657.
658.
659.
The possibility of introducing genetically engineered microorganisms (GEM) into simple biotic cycles of laboratory water microcosms was investigated. The survival of the recombinant strain Escherichia coli Z905 (Apr, Lux+) in microcosms depends on the type of model ecosystems. During the absence of algae blooming in the model ecosystem, the part of plasmid-containing cells E. coli decreased fast, and the structure of the plasmid was also modified. In conditions of algae blooming (Ankistrodesmus sp.) an almost total maintenance of plasmid-containing cells was observed in E. coli population. A mathematics model of GEM's behavior in water ecosystems with different level of complexity has been formulated. Mechanisms causing the difference in luminescent exhibition of different species are discussed, and attempts are made to forecast the GEM's behavior in water ecosystems.  相似文献   
660.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号