首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3148篇
  免费   8篇
  国内免费   12篇
航空   1668篇
航天技术   1080篇
综合类   9篇
航天   411篇
  2018年   37篇
  2017年   19篇
  2016年   22篇
  2014年   54篇
  2013年   78篇
  2012年   59篇
  2011年   105篇
  2010年   82篇
  2009年   112篇
  2008年   175篇
  2007年   90篇
  2006年   60篇
  2005年   77篇
  2004年   78篇
  2003年   100篇
  2002年   52篇
  2001年   99篇
  2000年   48篇
  1999年   79篇
  1998年   93篇
  1997年   73篇
  1996年   91篇
  1995年   124篇
  1994年   98篇
  1993年   66篇
  1992年   101篇
  1991年   42篇
  1990年   36篇
  1989年   87篇
  1988年   33篇
  1987年   28篇
  1986年   32篇
  1985年   87篇
  1984年   91篇
  1983年   59篇
  1982年   82篇
  1981年   92篇
  1980年   34篇
  1979年   42篇
  1978年   32篇
  1977年   22篇
  1976年   21篇
  1975年   37篇
  1974年   24篇
  1973年   18篇
  1972年   29篇
  1969年   17篇
  1968年   16篇
  1967年   20篇
  1966年   16篇
排序方式: 共有3168条查询结果,搜索用时 15 毫秒
981.
Sequential nonlinear tracking using UKF and raw range-rate measurements   总被引:1,自引:0,他引:1  
The three-dimensional (3D) converted measurements filtering (CMF) with both converted position and raw range-rate measurement is proposed to solve the Doppler radar target tracking, where the error between radar-target range and range rate are correlated. Firstly, not using pseudomeasurement constructed by product of range and range rate to reduce the high nonlinearity, the raw range-rate measurements are utilized by unscented Kalman filter (UKF), where the converted errors of the position and the range rate are decorrelated, then linear part (position measurements) and nonlinear part (range-rate measurement) are sequentially processed by Kalman filter (KF) and UKF. Secondly, based on the assumption of small measurement error, the mean and covariance of converted measurement errors are derived by second-order Taylor series expansion. Finally, the influence of the correlated coefficient rho between the range and range rate, and the range-rate noise deviation sigmar are taken into account and extreme values of rho and sigmar are used in Monte Carlo simulations. The results show that the proposed method is, in a sense, effective and practical  相似文献   
982.
Pop-up threats usually appear or disappear randomly in a battle field. If the next pop-up threat locations could be predicted it would assist a search or attack team, such as in a persistent area denial (PAD) mission, in getting a team of unmanned air vehicles (UAVs) to the threats sooner. We present a Markov model for predicting pop-up ground threats in military operations. We first introduce a general Markov chain of order n to capture the dependence of the appearance of pop-up threats at previous locations of the pop-up threats over time. We then present an adaptive approach to estimate the stationary transition probabilities of the nth order Markov models. To choose the order of the Markov chain model for a specific application, we suggest using hypothesis tests from statistical inference on historical data of pop-up threat locations. Anticipating intelligent responses from an adversary, which might change its pop-up threat deployment strategy upon observing UAV movements, we present adaptive Markov chain models using a moving horizon approach to estimate possibly abrupt changes in transition probabilities. We combine predicted and actual pop-up target locations to develop efficient cooperative strategies for networked UAVs. A theoretical analysis and simulation results are presented to evaluate the Markov model used for predicting pop-up threats. These results demonstrate the effectiveness of cooperative strategies using the combined information of threats and predicted threats in improving overall mission performance.  相似文献   
983.
Lario  D.  Haggerty  D.K.  Roelof  E.C.  Tappin  S.J.  Forsyth  R.J.  Gosling  J.T. 《Space Science Reviews》2001,97(1-4):277-280
On day 49 of 1999 a strong interplanetary shock was observed by the ACE spacecraft located at 1 AU from the Sun. This shock was followed 10 hours later by a magnetic cloud (MC). A large solar energetic particle (SEP) event was observed in association with the arrival of the shock and the MC at ACE. The Ulysses spacecraft, located at 22° S heliolatitude and nearly the same ecliptic longitude as ACE, observed a large SEP event beginning on day 54 that peaked with the arrival of a solar wind and magnetic field disturbance on day 61. A magnetic cloud was observed by Ulysses on days 63–64. We suggest a scenario in which both spacecraft intercepted the same MC, although sampling different regions of it. We describe the effects that the MC produced on the streaming of energetic particles at both spacecraft. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
984.
The fluxes of O and Fe ions at high heliolatitudes measured by the HiScale instrument on Ulysses reflect the dynamical processes that affect the charged particle populations in the heliosphere. Both the O and Fe ions show more latitude dependence in the first (solar minimum) orbit to high southern heliolatitudes than during the second (solar maximum) orbit. The ion fluxes are larger during the solar minimum orbit; the flux levels are influenced by the occurrence of corotating interaction regions. The Fe/O abundance ratios are found to be similar at 1 AU and at high heliolatitudes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
985.
Carlson  C.W.  McFadden  J.P.  Turin  P.  Curtis  D.W.  Magoncelli  A. 《Space Science Reviews》2001,98(1-2):33-66
The ion and electron plasma experiment on the Fast Auroral Snapshot satellite (FAST) is designed to measure pitch-angle distributions of suprathermal auroral electrons and ions with high sensitivity, wide dynamic range, good energy and angular resolution, and exceptional time resolution. These measurements support the primary scientific goal of the FAST mission to understand the physical processes responsible for auroral particle acceleration and heating, and associated wave-particle interactions. The instrument includes a complement of 8 pairs of `Top Hat' electrostatic analyzer heads with microchannel plate (MCP) electron multipliers and discrete anodes to provide angle resolved measurements. The analyzers are packaged in four instrument stacks, each containing four analyzers. These four stacks are equally spaced around the spacecraft spin plane. Analyzers mounted on opposite sides of the spacecraft operate in pairs such that their individual 180° fields of view combine to give an unobstructed 360° field of view in the spin plane. The earth's magnetic field is within a few degrees of the spin plane during most auroral crossings, so the time resolution for pitch-angle distribution measurements is independent of the spacecraft spin period. Two analyzer pairs serve as electron and ion spectrometers that obtain distributions of 48 energies at 32 angles every 78 ms. Their standard energy ranges are 4 eV to 32 keV for electrons and 3 eV to 24 keV for ions. These sensors also have deflection plates that can track the magnetic field direction within 10° of the spin plane to resolve narrow, magnetic field-aligned beams of electrons and ions. The remaining six analyzer pairs collectively function as an electron spectrograph, resolving distributions with 16 contiguous pitch-angle bins and a selectable trade-off of energy and time resolution. Two examples of possible operating modes are a maximum time resolution mode with 16 angles and 6 energies every 1.63 ms, or a maximum energy resolution mode with 16 angles and 48 energies every 13 ms. The instrument electronics include mcp pulse amplifiers and counters, high voltage supplies, command/data interface circuits, and diagnostic test circuits. All data formatting, commanding, timing and operational control of the plasma analyzer instrument are managed by a central instrument data processing unit (IDPU), which controls all of the FAST science instruments. The IDPU creates slower data modes by averaging the high rate measurements collected on the spacecraft. A flexible combination of burst mode data and slower `survey' data are defined by IDPU software tables that can be revised by command uploads. Initial flight results demonstrate successful achievement of all measurement objectives.  相似文献   
986.
The relatively faint optical and UV emission from non-radiative shock waves provides diagnostics for processes related to cosmic ray acceleration in collisionless shocks. Emission line profiles and intensities can be used to determine the efficiencies of electron-ion and ion-ion thermal equilibration, which influence the population of fast particles injected into the acceleration process. It is found that T e/T p declines with shock speed and that T i is roughly proportional to mass in fast shocks. Important information about cosmic ray precursors may be available, but the interpretation is still somewhat ambiguous. The compression ratios in shocks which efficiently accelerate cosmic rays are predicted to be substantially larger than the factor of 4 expected for a strong shock in a = 5/3 perfect gas, and some limits may be available from observations.  相似文献   
987.
Longitudinal distributions of post-midnight equatorial ionospheric irregularity occurrences observed by ROCSAT-1 (1st satellite of the Republic of China) during moderate to high solar activity years in two solstices are studied with respect to the vertical drift velocity and density variations. The post-midnight irregularity distributions are found to be similar to the well-documented pre-midnight ones, but are different from some published distributions taken during solar minimum years. Even though the post-midnight ionosphere is sinking in general, longitudes of frequent positive vertical drift and high density seems to coincide with the longitudes of high irregularity occurrences. Large scatters found in the vertical drift velocity and density around the dip equator in different ROCSAT-1 orbits indicate the existence of large and frequent variations in the vertical drift velocity and density that seem to be able to provide sufficient perturbations for the Rayleigh-Taylor (RT) instability to cause the irregularity occurrences. The need of seeding agents such as gravity waves from atmospheric convective clouds to initiate the Rayleigh-Taylor instability may not be necessary.  相似文献   
988.
The Balloon-borne Experiment with a Superconducting Spectrometer (BESS) is configured with a solenoidal superconducting magnet and a suite of precision particle detectors, including time-of-flight hodoscopes based on plastic scintillators, a silica-aerogel Cherenkov detector, and a high resolution tracking system with a central jet-type drift chamber. The charges of incident particles are determined from energy losses in the scintillators. Their magnetic rigidities (momentum/charge) are measured by reconstructing each particle trajectory in the magnetic field, and their velocities are obtained by using the time-of-flight system. Together, these measurements can accurately identify helium isotopes among the incoming cosmic-ray helium nuclei up to energies in the GeV per nucleon region. The BESS-Polar I instrument flew for 8.5 days over Antarctica from December 13th to December 21st, 2004. Its long-duration flight and large geometric acceptance allow the time variations of isotopic fluxes to be studied for the first time. The time variations of helium isotope fluxes are presented here for rigidities from 1.2 to 2.5 GV and results are compared to previously reported proton data and neutron monitor data.  相似文献   
989.
Earlier studies have shown that an orbit prediction accuracy of 20 arc sec ground station pointing error for 1–2 day predictions was achievable for low Earth orbit (LEO) debris using two passes of debris laser ranging (DLR) data from a single station, separated by about 24 h. The accuracy was determined by comparing the predicted orbits with subsequent tracking data from the same station. This accuracy statement might be over-optimistic for other parts of orbit far away from the station. This paper presents the achievable orbit prediction accuracy using satellite laser ranging (SLR) data of Starlette and Larets under a similar data scenario as that of DLR. The SLR data is corrupted with random errors of 1 m standard deviation so that its accuracy is similar to that of DLR data. The accurate ILRS Consolidated Prediction Format orbits are used as reference to compute the orbit prediction errors. The study demonstrates that accuracy of 20 arc sec for 1–2 day predictions is achievable.  相似文献   
990.
In this paper, through a case study, an attempt has been made to bring out the relationship between post noon E-region electric field and post sunset F-region vertical plasma drift on quiet time Counter Electrojet (CEJ) days. Study carried out using the data from a multi frequency HF Doppler Radar and Digital Ionosonde located over Trivandrum (8.5° N; 77° E; 0.5° N dip lat.) a geomagnetic dip equatorial station in India during quite time CEJ days of the years 2004 and 2006, revealed some interesting aspects of the E region electrodynamics and post sunset F region electrodynamics. It has been observed that, in contrast to the normal electrojet (EEJ) days, the Pre-Reversal Enhancement (PRE) is either weakened or inhibited on CEJ days and the field reversal takes place much earlier than that on a normal day. It is suggested that even after the effects of the field reversal ceases to show up in the ground magnetic data, the reversed field may persist and shows up as a decrease in the PRE experienced by the F-region. In other words, the study indicates that the EEJ associated electrodynamics have a significant role in controlling the PRE.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号