首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   318篇
  免费   10篇
  国内免费   14篇
航空   129篇
航天技术   33篇
综合类   8篇
航天   172篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2016年   3篇
  2015年   2篇
  2014年   2篇
  2013年   4篇
  2012年   15篇
  2011年   17篇
  2010年   9篇
  2009年   1篇
  2008年   9篇
  2007年   10篇
  2006年   6篇
  2005年   7篇
  2004年   7篇
  2003年   12篇
  2002年   9篇
  2001年   3篇
  2000年   6篇
  1998年   15篇
  1997年   5篇
  1996年   10篇
  1995年   21篇
  1994年   14篇
  1993年   4篇
  1992年   7篇
  1991年   8篇
  1990年   7篇
  1989年   12篇
  1988年   17篇
  1987年   10篇
  1986年   2篇
  1985年   15篇
  1984年   13篇
  1983年   19篇
  1982年   16篇
  1981年   9篇
  1980年   5篇
  1979年   2篇
  1977年   3篇
  1976年   1篇
  1975年   1篇
排序方式: 共有342条查询结果,搜索用时 31 毫秒
241.
On the basis of the experience gained during the previous french-russian missions on board MIR about the adaptation processes of the cardio-vascular system, a new laboratory has been designed. The objective of this “PHYSIOLAB” is to have a better understanding of the mechanisms underlying the changes in the cardio-vascular system, with a special emphasis on the phenomenon of cardio-vascular deconditioning after landing.

Beyond these scientific objectives, it is also intended to use PHYSIOLAB to help in the medical monitoring on-board MIR, during functional tests such as LBNP.

PHYSIOLAB will be set up in MIR by the French cosmonaut during the next french-russian CASSIOPEE mission in 1996. Its architecture is based on a central unit, which controls the experimental protocols, records the results and provides an interface for transmission to the ground via telemetry. Different specific modules are used for the acquisition of various physiological parameters.

This PHYSIOLAB under development for the CASSIOPEE mission should evolve towards a more ambitious laboratory, whose definition would take into account the results obtained with the first version of PHYSIOLAB. This “second generation” laboratory should be developed in the frame of wide international cooperation.  相似文献   

242.
哥达德航天中心飞行动力学部委托应用技术联合公司在基于DOS个人计算机上开发实时定轨/增强型系统(RTOD/E),作成卫星轨道序贯测定法的样机系统。本文介绍了研究结果,即比较了TDRSS用户星——陆地星—4利用在个人计算机上运行的RTOD/E的定轨精度和利用在主机上运行的哥达德测轨系统(GTDS)正规成批最小二乘系统的精度。陆地星—4测轨结果将为地球观测系统(EOS)系列卫星提供很有用的经验。确定了1992年5月18日到24日的陆地星—4的星历表,这一段时间有密集的TDRSS对其的跟踪数据。期间发生了二次独立的调轨机动,一次是TDRS卫星(东TDRS),另一次是陆地星—4轨道微调机动。对成批法和序贯法得出的轨道解进行了多种独立的一致性检验(成批法是重迭比对,序贯法是协方差和一次测量残差)。陆地星前向滤波的RTOD/E轨道解与确定性的GTDS轨道解进行比较;当滤波器进入稳态后,两轨道解的差一般小于30米。  相似文献   
243.
介绍一种温度传感器的现场动态校准新方法。这种方法是非介入的,并且能校准各种温度传感器。这种方法用斩波调制的激光加热,使传感器产生阶跃温度变化,从而实现动态校准。作为应用实例,文中给出了气流中热敏电阻的动态响应结果。  相似文献   
244.
五坐标数控加工局部过切   总被引:1,自引:0,他引:1  
在五坐标数控加工中,不可避免会发生干涉现象,在数控编程时需要特别注意刀具的几何形状,被加工表面的复杂程度,和工作行程等要素。  相似文献   
245.
Titan, the largest satellite of Saturn, has a dense N2-CH4 atmosphere rich in organic compounds, both in gas and in aerosol phases. Its surface is probably covered by oceans of liquid methane-ethane mixtures, with many dissolved organics. This quasi planet appears as a natural laboratory to study chemical evolution toward complex organic systems in a planetary environment over a long time scale. With the Cassini-Huygens mission NASA and ESA will jointly send an orbiter (Cassini) around Saturn and a probe (Huygens) in the atmosphere of Titan. This mission, currently planned to be launched in 1996-1997 for a Saturn - Titan arrival in 2004, offers a unique opportunity to study in detail extra-terrestrial organic processes. Consequently, it has important implications in the field of exobiology and the origins of life.  相似文献   
246.
247.
We have developed the space suit simulator Aouda.X, which is capable of reproducing the physical and sensory limitations a flight-worthy suit would have on Mars. Based upon a Hard-Upper-Torso design, it has an advanced human-machine interface and a sensory network connected to an On-Board Data Handling system to increase the situational awareness in the field. Although the suit simulator is not pressurized, the physical forces that lead to a reduced working envelope and physical performance are reproduced with a calibrated exoskeleton. This allows us to simulate various pressure regimes from 0.3-1 bar. Aouda.X has been tested in several laboratory and field settings, including sterile sampling at 2800 m altitude inside a glacial ice cave and a cryochamber at -110°C, and subsurface tests in connection with geophysical instrumentation relevant to astrobiology, including ground-penetrating radar, geoacoustics, and drilling. The communication subsystem allows for a direct interaction with remote science teams via telemetry from a mission control center. Aouda.X as such is a versatile experimental platform for studying Mars exploration activities in a high-fidelity Mars analog environment with a focus on astrobiology and operations research that has been optimized to reduce the amount of biological cross contamination. We report on the performance envelope of the Aouda.X system and its operational limitations.  相似文献   
248.
Tardigrades are tiny (less than 1?mm in length) invertebrate animals that have the potential to survive travel to other planets because of their tolerance to extreme environmental conditions by means of a dry ametabolic state called anhydrobiosis. While the tolerance of adult tardigrades to extreme environments has been reported, there are few reports on the tolerance of their eggs. We examined the ability of hydrated and anhydrobiotic eggs of the tardigrade Ramazzottius varieornatus to hatch after exposure to ionizing irradiation (helium ions), extremely low and high temperatures, and high vacuum. We previously reported that there was a similar pattern of tolerance against ionizing radiation between hydrated and anhydrobiotic adults. In contrast, anhydrobiotic eggs (50% lethal dose; 1690 Gy) were substantially more radioresistant than hydrated ones (50% lethal dose; 509 Gy). Anhydrobiotic eggs also have a broader temperature resistance compared with hydrated ones. Over 70% of the anhydrobiotic eggs treated at either -196°C or +50°C hatched successfully, but all the hydrated eggs failed to hatch. After exposure to high-vacuum conditions (5.3×10(-4) Pa to 6.2×10(-5) Pa), the hatchability of the anhydrobiotic eggs was comparable to that of untreated control eggs.  相似文献   
249.
The multi-user facility EXPOSE-E was designed by the European Space Agency to enable astrobiology research in space (low-Earth orbit). On 7 February 2008, EXPOSE-E was carried to the International Space Station (ISS) on the European Technology Exposure Facility (EuTEF) platform in the cargo bay of Space Shuttle STS-122 Atlantis. The facility was installed at the starboard cone of the Columbus module by extravehicular activity, where it remained in space for 1.5 years. EXPOSE-E was returned to Earth with STS-128 Discovery on 12 September 2009 for subsequent sample analysis. EXPOSE-E provided accommodation in three exposure trays for a variety of astrobiological test samples that were exposed to selected space conditions: either to space vacuum, solar electromagnetic radiation at >110?nm and cosmic radiation (trays 1 and 3) or to simulated martian surface conditions (tray 2). Data on UV radiation, cosmic radiation, and temperature were measured every 10?s and downlinked by telemetry. A parallel mission ground reference (MGR) experiment was performed on ground with a parallel set of hardware and samples under simulated space conditions. EXPOSE-E performed a successful 1.5-year mission in space.  相似文献   
250.
In the space experiment "Molecular adaptation strategies of microorganisms to different space and planetary UV climate conditions" (ADAPT), bacterial endospores of the highly UV-resistant Bacillus subtilis strain MW01 were exposed to low-Earth orbit (LEO) and simulated martian surface conditions for 559 days on board the European Space Agency's exposure facility EXPOSE-E, mounted outside the International Space Station. The survival of B. subtilis MW01 spores from both assays (LEO and simulated martian conditions) was determined by a colony-formation assay after retrieval. It was clearly shown that solar extraterrestrial UV radiation (λ≥110?nm) as well as the martian UV spectrum (λ≥200?nm) was the most deleterious factor applied; in some samples only a few spore survivors were recovered from B. subtilis MW01 spores exposed in monolayers. However, if shielded from solar irradiation, about 8% of MW01 spores survived in LEO conditions, and 100% survived in simulated martian conditions, compared to the laboratory controls. The results demonstrate the effect of shielding against the high inactivation potential of extraterrestrial solar UV radiation, which limits the chances of survival of even the highly UV-resistant strain of B. subtilis MW01 in the harsh environments of outer space and the martian surface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号