首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
航空   22篇
航天技术   1篇
  2016年   3篇
  2013年   1篇
  2011年   1篇
  2009年   2篇
  2008年   1篇
  2007年   4篇
  2003年   3篇
  2000年   4篇
  1995年   2篇
  1985年   1篇
  1979年   1篇
排序方式: 共有23条查询结果,搜索用时 0 毫秒
21.
22.
Recent research into the effects of the interplanetary magnetic field (IMF) on the Earth's auroral oval and plasmapause are reviewed. While the IMF sector structure has been known for some time to produce asymmetries in polar-cap convection, recent work has shown these effects to extend into the dayside auroral oval. A restricted region of local times referred to as the convection throat is found to move to either side of the noon meridian in response to changes in the IMF B y component.The question of the entry of solar-wind plasma into the magnetosphere continues to be a prime area of research. While it is generally felt that magnetic merging must play some significant role, evidence continues to mount that it does not occur at the subsolar magnetopause, as previously supposed, and that other driving forces for antisunward convection must occur on closed field lines. A suggestion is made that many of the seemingly conflicting observations that have been made in the region of the dayside cusps can be explained if significant distortions of closed field lines near the dayside magnetopause are allowed and if closed and open field lines coexist in the cusp, particularly near the entry layer.Effects of the IMF on the nightside auroral oval and on the plasmapause stem chiefly from the expansion of the oval to lower latitudes which is produced by southward IMF components and from the impulsive substorm phenomena that become stronger and more probable with increasingly southward IMF.Proceedings of the Symposium on Solar Terrestrial Physics held in Innsbruck, May–June 1978.  相似文献   
23.
Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) is a NASA Explorer Mission-of-Opportunity to stereoscopically image the Earth’s magnetosphere for the first time. TWINS extends our understanding of magnetospheric structure and processes by providing simultaneous Energetic Neutral Atom (ENA) imaging from two widely separated locations. TWINS observes ENAs from 1–100 keV with high angular (~4°×4°) and time (~1-minute) resolution. The TWINS Ly-α monitor measures the geocoronal hydrogen density to aid in ENA analysis while environmental sensors provide contemporaneous measurements of the local charged particle environments. By imaging ENAs with identical instruments from two widely spaced, high-altitude, high-inclination spacecraft, TWINS enables three-dimensional visualization of the large-scale structures and dynamics within the magnetosphere for the first time. This “instrument paper” documents the TWINS design, construction, calibration, and initial results. Finally, the appendix of this paper describes and documents the Southwest Research Institute (SwRI) instrument calibration facility; this facility was used for all TWINS instrument-level calibrations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号