首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
航空   6篇
航天技术   13篇
航天   2篇
  2018年   1篇
  2015年   1篇
  2012年   1篇
  2003年   3篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
  1985年   2篇
  1983年   2篇
  1981年   3篇
  1971年   2篇
排序方式: 共有21条查询结果,搜索用时 218 毫秒
11.
Since the importance of the coupling mechanisms between the mesosphere and the thermosphere has increasingly been recognized, the structure and variation of turbulence has become one of the subjects of extended investigations and discussions. In spite of the fundamental role of turbulence, theoretical difficulties and lack of observational information restrict its applicability to atmospheric modeling. In the following paper the basic ideas of the parameterization of turbulence and the most important observational techniques and results are reviewed. The comparison of observations with theoretical model calculations shows the difficulties which underly current investigations and indicates the trends of future research.  相似文献   
12.
13.
The abundance ratio of neutral hydrogen to neutral helium, as deduced from interplanetary observations of Lyman-alpha and He 584 A radiation by Mariner 10, is significantly lower than the cosmic abundance ratio of these elements, thus showing that the local interstellar medium (LISM) is partly ionized. It is shown that an important source of ionization of the LISM can be thermal collisions, yielding an ionization degree of about 50% for the hydrogen component.  相似文献   
14.
This paper presents exact formulas and graphs to determine the root-mean-square error of prediction for position and velocity estimates of an object, based on least-squares smoothing. The prediction interval is taken from an endpoint estimate up to ten times the smoothing interval. The rms values may be used to determine how large a search volume must be to accommodate a substantial data dropout interval.  相似文献   
15.
In order to obtain new insight into the detailed structure of the lower thermosphere the long-established method of drag analysis again proves to be a powerful tool. For near-circular satellite orbits, in addition to the semi-major axis, the eccentricity and the argument of perigee are strongly influenced by atmospheric drag. With the help of a new computational scheme, which is based on fundamental equations of satellite drag analysis, the amplitudes and phases of global density variations are derived.  相似文献   
16.
17.
The C.E.B.A.S. MINI-MODULE is the miniaturized space flight version of the Closed Equilibrated Biological Aquatic System (C.E.B.A.S.). It fits into a large middeck locker tray and is scheduled to be flown in the STS 85 and in the NEUROLAB missions. Its volume is about 9 liters and it consists of two animal tanks, a plant cultivator, and a bacteria filter in a monolithic design. An external sensor unit is connected to a data acquisition/control unit. The system integrates its own biological life support. The CO2 exhaled by the consumers (fishes, snails, microorganisms) is assimilated by water plants (Ceratophyllum demersum) which provide them with oxygen. The products of biomass degradation and excretion (mainly ammonia ions) are converted by bacteria into nitrite and nitrate. The latter is taken up by the plants as a nitrogen source together with other ions like phosphate. The plants convert light energy into chemical energy and their illumination is regulated via the oxygen concentration in the water by the control unit. In ground laboratory tests the system exhibited biological stability up to three month. The buffer capacity of the biological filter system is high enough to eliminate the degradation products of about one half of the dead animal biomass as shown in a "crash test". A test series using the laboratory model of the flight hardware demonstrated the biological stability and technical reliability with mission-identical loading and test duration. A comprehensive biological research program is established for the C.E.B.A.S. MINI-MODULE in which five German and three U.S.-American universities as well as the Russian Academy of Sciences are involved.  相似文献   
18.
The Closed Equilibrated Biological Aquatic System" (C.E.B.A.S.) is finally disposed for long-term multi-generation experiments with aquatic organisms in a space station. Therefore a minimum operation time of three months is required. It is verified in three versions of laboratory prototypes. The third one passed successfully a 12 months mid-term test in 1995/96 thus demonstrating its high biological stability. The third version of the C.E.B.A.S. consists of a 100 l animal tank, two plant cultivators with a volume of 15 l each with independent illuminations, a 3.0 l semibiological "mechanical" filter, a 3.0 l bacteria filter, a heating/cooling device and a dummy filter unit. The live-bearing teleost Xiphophorus helleri is the vertebrate and the pulmonate water snail Biomphalana glabrata the invertebrate experimental animal in the system. The rootless higher water plant Ceratophyllum demersum is the producer organism. Ammonia oxidizing bacteria and other microorganisms settle in the filters. A sample data acquisition is combined with temperature and plant illumination control. Besides of the space aspects the C.E.B.A.S. proved to be an extremely suitable tool to investigate the organism and subcomponent interactions in a well defined terrestrial aquatic closed ecosystem by providing physical, chemical and biological data which allow an approach to a comprehensive system analysis. Moreover the C.E.B.A.S. is the base for the development of innovative combined animal-plant aquaculture systems for human nutrition on earth which could be implemented into bioregenerative life support systems with a higher degree of complexity suitable for lunar or planetary bases.  相似文献   
19.
The original Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) is a long-term multi-generation research facility for experiments with aquatic animals and plants in a space station the development of which is surrounded by a large international scientific program. In addition, a miniaturized laboratory prototype, the C.E.B.A.S. MINI MODULE, with a total volume of about 10-12 liters for a Spacelab middeck locker was developed and a first version was tested successfully for two weeks with a population of fishes (Xiphophorus helleri) in the animal tank and a Ceratophyllum spec. in the illuminated higher plant growth chamber. The water recycling system consisted of a bacteria filter and a mechanical filter and the silastic tubing gas exchanger was separated by valves for the utilization in emergency cases only. Data were collected with the acquisition module of the original C.E.B.A.S. process control system. In addition, an optimized version was tested for 7 weeks with fishes and plants and thereafter with fish and with plants only for 2 and 1 weeks, resp.. The paper presents the relevant water parameters (e.g., pH, pressure, temperature, oxygen saturation, flow rate, ion concentrations) during the test period as well as morphological and physiological data of the enclosed animals and plants. On the basis of the given results the possible role of the C.E.B.A.S. system as a scientific tool in artificial ecosystem research and for the development of a combined animal-plant intensive aquaculture system and its utilization in bioregenerative life support is discussed.  相似文献   
20.
A microwave interferometer which permits the measurement of phase shift in a plasma independent of propagation path attenuation over a 30-dB dynamic range is described. Results are presented from an experimental evaluation of measurement accuracy of the interferometer instrument.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号