首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
航空   13篇
航天技术   2篇
航天   1篇
  2009年   1篇
  2008年   4篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
11.
Life support components are evaluated for application to an idealized closed life support system which includes an algal reactor for food production. Weight-based trade studies are reported as "break-even" time for replacing food stores with a regenerative bioreactor. It is concluded that closure of the life support gases (oxygen recovery) depends on the carbon dioxide reduction chemistry and that an algae-based food production can provide an attractive alternative to re-supply for longer duration missions.  相似文献   
12.
Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI)   总被引:2,自引:0,他引:2  
The Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) is a five telescope package, which has been developed for the Solar Terrestrial Relation Observatory (STEREO) mission by the Naval Research Laboratory (USA), the Lockheed Solar and Astrophysics Laboratory (USA), the Goddard Space Flight Center (USA), the University of Birmingham (UK), the Rutherford Appleton Laboratory (UK), the Max Planck Institute for Solar System Research (Germany), the Centre Spatiale de Leige (Belgium), the Institut d’Optique (France) and the Institut d’Astrophysique Spatiale (France). SECCHI comprises five telescopes, which together image the solar corona from the solar disk to beyond 1 AU. These telescopes are: an extreme ultraviolet imager (EUVI: 1–1.7 R), two traditional Lyot coronagraphs (COR1: 1.5–4 R and COR2: 2.5–15 R) and two new designs of heliospheric imagers (HI-1: 15–84 R and HI-2: 66–318 R). All the instruments use 2048×2048 pixel CCD arrays in a backside-in mode. The EUVI backside surface has been specially processed for EUV sensitivity, while the others have an anti-reflection coating applied. A multi-tasking operating system, running on a PowerPC CPU, receives commands from the spacecraft, controls the instrument operations, acquires the images and compresses them for downlink through the main science channel (at compression factors typically up to 20×) and also through a low bandwidth channel to be used for space weather forecasting (at compression factors up to 200×). An image compression factor of about 10× enable the collection of images at the rate of about one every 2–3 minutes. Identical instruments, except for different sizes of occulters, are included on the STEREO-A and STEREO-B spacecraft.  相似文献   
13.
The design and operation of the Genesis Solar-Wind Concentrator relies heavily on computer simulations. The computer model is described here, as well as the solar wind conditions used as simulation inputs, including oxygen charge state, velocity, thermal, and angular distributions. The simulation included effects such as ion backscattering losses, which also affect the mass fractionation of the instrument. Calculations were performed for oxygen, the principal element of interest, as well as for H and He. Ion fluences and oxygen mass fractionation are determined as a function of radius on the target. The results were used to verify that the instrument was indeed meeting its requirements, and will help prepare for distribution of the target samples upon return of the instrument to earth. The actual instrumental fractionation will be determined at that time by comparing solar-wind neon isotope ratios measured in passive collectors with neon in the Concentrator target, and by using a model similar to the one described here to extrapolate the instrumental fractionation to oxygen isotopes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
14.
The primary goal of the Genesis Mission is to collect solar wind ions and, from their analysis, establish key isotopic ratios that will help constrain models of solar nebula formation and evolution. The ratios of primary interest include 17O/16O and 18O/16O to ±0.1%, 15N/14N to ±1%, and the Li, Be, and B elemental and isotopic abundances. The required accuracies in N and O ratios cannot be achieved without concentrating the solar wind and implanting it into low-background target materials that are returned to Earth for analysis. The Genesis Concentrator is designed to concentrate the heavy ion flux from the solar wind by an average factor of at least 20 and implant it into a target of ultra-pure, well-characterized materials. High-transparency grids held at high voltages are used near the aperture to reject >90% of the protons, avoiding damage to the target. Another set of grids and applied voltages are used to accelerate and focus the remaining ions to implant into the target. The design uses an energy-independent parabolic ion mirror to focus ions onto a 6.2 cm diameter target of materials selected to contain levels of O and other elements of interest established and documented to be below 10% of the levels expected from the concentrated solar wind. To optimize the concentration of the ions, voltages are constantly adjusted based on real-time solar wind speed and temperature measurements from the Genesis ion monitor. Construction of the Concentrator required new developments in ion optics; materials; and instrument testing and handling. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
15.
An instrumental variable (IV) approach is presented for estimating the weights of an adaptive antenna array. Theoretical analysis of the IV method shows that the antenna gain weights are independent of finitely correlated noise, so that unbiased estimation of signal arrival angles is possible. Only matrix inversions are required to compute the weight estimates. In this sense, the IV method provides performance comparable with eigenvector techniques but with lower computational burden. Both minimal and overdetermined IV estimators are derived. The overdetermined estimators give the same theoretical array weights as minimal estimators, but yield more accurate weight estimates in real data situations. Simulation results are presented to compare these IV methods with one another and with conventional matrix inversion weight estimators. In these examples it is seen that IV methods are able to resolve closely spaced interference sources when conventional matrix inversion techniques cannot. It is also shown that overdetermined methods are capable of providing weight estimates with lower variances than those of minimal methods  相似文献   
16.
We propose a model for generating low-frequency synthetic aperture radar (SAR) clutter that relates model parameters to physical characteristics of the scene. The model includes both distributed scattering and large-amplitude discrete clutter responses. The model also incorporates the SAR imaging process, which introduces correlation among image pixels. The model may be used to generate synthetic clutter for a range of environmental operating conditions for use in target detection performance evaluation of the radar and automatic target detection/recognition algorithms. We derive a statistical representation of the proposed clutter model's pixel amplitudes and compare with measured data from the CARABAS-II SAR. Simulated clutter images capture the structure and amplitude responses seen in the measured data. A statistical analysis shows an order of magnitude improvement in model fit error compared with standard maximum-likelihood (ML) density fitting methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号