首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
  国内免费   1篇
航空   16篇
航天   10篇
  2011年   1篇
  2008年   4篇
  2007年   1篇
  2006年   1篇
  2002年   2篇
  1998年   1篇
  1997年   1篇
  1994年   5篇
  1993年   4篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1974年   1篇
排序方式: 共有26条查询结果,搜索用时 187 毫秒
11.
Carotenoid analysis of halophilic archaea by resonance Raman spectroscopy   总被引:1,自引:0,他引:1  
Recently, halite and sulfate evaporate rocks have been discovered on Mars by the NASA rovers, Spirit and Opportunity. It is reasonable to propose that halophilic microorganisms could have potentially flourished in these settings. If so, biomolecules found in microorganisms adapted to high salinity and basic pH environments on Earth may be reliable biomarkers for detecting life on Mars. Therefore, we investigated the potential of Resonance Raman (RR) spectroscopy to detect biomarkers derived from microorganisms adapted to hypersaline environments. RR spectra were acquired using 488.0 and 514.5 nm excitation from a variety of halophilic archaea, including Halobacterium salinarum NRC-1, Halococcus morrhuae, and Natrinema pallidum. It was clearly demonstrated that RR spectra enhance the chromophore carotenoid molecules in the cell membrane with respect to the various protein and lipid cellular components. RR spectra acquired from all halophilic archaea investigated contained major features at approximately 1000, 1152, and 1505 cm(-1). The bands at 1505 cm(-1) and 1152 cm(-1) are due to in-phase C=C (nu(1) ) and C-C stretching ( nu(2) ) vibrations of the polyene chain in carotenoids. Additionally, in-plane rocking modes of CH(3) groups attached to the polyene chain coupled with C-C bonds occur in the 1000 cm(-1) region. We also investigated the RR spectral differences between bacterioruberin and bacteriorhodopsin as another potential biomarker for hypersaline environments. By comparison, the RR spectrum acquired from bacteriorhodopsin is much more complex and contains modes that can be divided into four groups: the C=C stretches (1600-1500 cm(-1)), the CCH in-plane rocks (1400-1250 cm(-1)), the C-C stretches (1250-1100 cm(-1)), and the hydrogen out-of-plane wags (1000-700 cm(-1)). RR spectroscopy was shown to be a useful tool for the analysis and remote in situ detection of carotenoids from halophilic archaea without the need for large sample sizes and complicated extractions, which are required by analytical techniques such as high performance liquid chromatography and mass spectrometry.  相似文献   
12.
Goh F  Jeon YJ  Barrow K  Neilan BA  Burns BP 《Astrobiology》2011,11(6):529-536
Biogenic stromatolites are sources of significant information on the evolution of microbial life. Despite their evolutionary significance, little is known about the mechanisms of osmoadaptation by microorganisms that comprise living stromatolites thriving in hypersaline environments. Osmoadaptive strategies for Halococcus hamelinensis, a novel halophilic archaeon recently isolated from living stromatolites in the hypersaline reaches of Shark Bay, were thus a particular interest in this study. To investigate the possibility of "salt-in-cytoplasm"-associated osmoadaptation for this archaeon, flame photometry studies were performed. From the results, it was evident that this halophilic archaeon did not accumulate intracellular K(+) ions when cells were exposed to either osmotic shock or conditions with gradual increments in salinity. These results were further supported by polymerase chain reaction (PCR) analyses where there was no evidence for the existence of homologous genes to an ATP-driven, high-affinity potassium uptake system in Halococcus hamelinensis. To identify an alternative salt adaptation mechanism associated with accumulation of compatible solutes for this archaeon, (1)H nuclear magnetic resonance (NMR) spectroscopy experiments were carried out. Results indicate that glycine betaine, trehalose, and glutamate are solutes likely to be involved in osmoregulation in this archeaon. Subsequent (1)H NMR analysis of cell extracts from this microorganism grown under various NaCl concentrations revealed that intracellular levels of glycine betaine increased with increasing concentrations of NaCl. This behavior of increasing glycine betaine concentration with increasing external NaCl is consistent with its identity as an osmolyte. In contrast, intracellular levels of trehalose were decreased in high concentrations of NaCl. This provides evidence that compatible solute accumulation appears to be the preferential salt regulation mechanism for this haloarchaeon, in contrast to the salt-in-cytoplasm strategy employed by many other halophilic archaea.  相似文献   
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号