全文获取类型
收费全文 | 6981篇 |
免费 | 14篇 |
国内免费 | 22篇 |
专业分类
航空 | 3533篇 |
航天技术 | 2472篇 |
综合类 | 29篇 |
航天 | 983篇 |
出版年
2019年 | 43篇 |
2018年 | 96篇 |
2017年 | 52篇 |
2016年 | 49篇 |
2014年 | 120篇 |
2013年 | 187篇 |
2012年 | 143篇 |
2011年 | 212篇 |
2010年 | 162篇 |
2009年 | 259篇 |
2008年 | 325篇 |
2007年 | 166篇 |
2006年 | 177篇 |
2005年 | 179篇 |
2004年 | 155篇 |
2003年 | 215篇 |
2002年 | 126篇 |
2001年 | 240篇 |
2000年 | 136篇 |
1999年 | 176篇 |
1998年 | 207篇 |
1997年 | 157篇 |
1996年 | 209篇 |
1995年 | 251篇 |
1994年 | 235篇 |
1993年 | 146篇 |
1992年 | 154篇 |
1991年 | 86篇 |
1990年 | 78篇 |
1989年 | 163篇 |
1988年 | 82篇 |
1987年 | 79篇 |
1986年 | 83篇 |
1985年 | 245篇 |
1984年 | 197篇 |
1983年 | 157篇 |
1982年 | 181篇 |
1981年 | 218篇 |
1980年 | 69篇 |
1979年 | 49篇 |
1978年 | 69篇 |
1977年 | 58篇 |
1976年 | 43篇 |
1975年 | 76篇 |
1974年 | 50篇 |
1973年 | 51篇 |
1972年 | 62篇 |
1971年 | 50篇 |
1970年 | 52篇 |
1969年 | 44篇 |
排序方式: 共有7017条查询结果,搜索用时 11 毫秒
781.
The high flux of energetic electron on geostationary orbit can induce many kinds of malfunction of the satellite there, within which the bulk-charging is the most significant that several broadcast satellite failures were confirmed to be due to this effect. The electron flux on geostationary orbit varies in a large range even up to three orders accompanied the passage of interplanetary magnetic cloud and the following geomagnetic disturbances. Upon the investigation of electron flux enhancement events, two types of events were partitioned as recurrent events and random ones. Both of the two kinds of events relate to the interplanetary conditions such as solar wind parameters, IMF etc and their evolution characters as well. As for the recurrent events, we found that, (1) all of the events exhibits periodic recurrence about 27 days, (2) significant increase of electron flux relates to interplanetary index and characters of their distribution, (3) the electron flux also has relation to solar activity index. An artificial neural network was constructed to estimate the flux I day ahead. The random electron flux enhancement events are rare and present different distribution figures to the recurrent ones. The figure of the random events and the conditions of their occurrence is also discussed in this paper. 相似文献
782.
M.O. Riazantseva G.N. Zastenker J.D. Richardson 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,35(12):2147-2151
We investigate properties of large (>20%) and sharp (<10 min) solar wind ion flux changes using INTERBALL-1 and WIND plasma and magnetic field measurements from 1996 to 1999. These ion flux changes are the boundaries of small-scale and middle-scale solar wind structures. We describe the behavior of the solar wind velocity, temperature and interplanetary magnetic field (IMF) during these sudden flux changes. Many of the largest ion flux changes occur during periods when the solar wind velocity is nearly constant, so these are mainly plasma density changes. The IMF magnitude and direction changes at these events can be either large or small. For about 55% of the ion flux changes, the sum of the thermal and magnetic pressure are in balance across the boundary. In many of the other cases, the thermal pressure change is significantly more than the magnetic pressure change. We also attempted to classify the types of discontinuities observed. 相似文献
783.
Chao-Song Huang J.C. Foster K. Yumoto J.L. Chau O. Veliz 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,36(12):2407-2412
It is well known that the solar wind can significantly affect high-latitude ionospheric dynamics. However, the effects of the solar wind on the middle- and low-latitude ionosphere are much less studied. In this paper, we report observations that large perturbations in the middle- and low-latitude ionosphere are well correlated with solar wind variations. In one event, a significant (20–30%) decrease of the midlatitude ionospheric electron density over a large latitudinal range was related to a sudden drop in the solar wind pressure and a northward turning of the interplanetary magnetic field, and the density decrease became larger at lower latitudes. In another event, periodic perturbations in the dayside equatorial ionospheric E × B drift and electrojet were closely associated with variations in the interplanetary electric field. Since the solar wind is always changing with time, it can be a very important and common source of ionospheric perturbations at middle- and low-latitudes. The relationship between solar wind variations and significant ionospheric perturbations has important applications in space weather. 相似文献
784.
E. Echer W.D. Gonzalez A. Dal Lago L.E.A. Vieira F.L. Guarnieri A.L.C. Gonzalez N.J. Schuch 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,36(12):2313-2317
In this work a study is performed on the correlation between fast forward interplanetary shock parameters at 1 Astronomical Unit and sudden impulse (SI) amplitudes in the H-component of the geomagnetic field, for periods of solar activity maximum (year 2000) and minimum (year 1995–1996). Solar wind temperature, density and speed, and total magnetic field, were taken to calculate the static pressures (thermal and magnetic) both in the upstream and downstream sides of the shocks. The variations of the solar wind parameters and pressures were then correlated with SI amplitudes. The solar wind speed variations presented good correlations with sudden impulses, with correlation coefficients larger than 0.70 both in solar maximum and solar minimum, whereas the solar wind density presented very low correlation. The parameter better correlated with SI was the square root dynamic pressure variation, showing a larger correlation during solar maximum (r = 0.82) than during solar minimum (r = 0.77). The correlations of SI with square root thermal and magnetic pressure were smaller than with the dynamic pressure, but they also present a good correlation, with r > 0.70 during both solar maximum and minimum. Multiple linear correlation analysis of SI in terms of the three pressure terms have shown that 78% and 85% of the variance in SI during solar maximum and minimum, respectively, are explained by the three pressure variations. Average sudden impulse amplitude was 25 nT during solar maximum and 21 nT during solar minimum, while average square root dynamic pressure variation is 1.20 and 0.86 nPa1/2 during solar maximum and minimum, respectively. Thus on average, fast forward interplanetary shocks are 33% stronger during solar maximum than during solar minimum, and the magnetospheric SI response has amplitude 20% higher during solar maximum than during solar minimum. A comparison with theoretical predictions (Tsyganenko’s model corrected by Earth’s induced currents) of the coefficient of sudden impulse change with solar wind dynamic pressure variation showed excellent agreement, with values around 17 nT/nPa1/2. 相似文献
785.
A. Aran B. Sanahuja D. Lario 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,36(12):2333-2338
We present a preliminary version of a potential tool for real time proton flux prediction which provides proton flux profiles and cumulative fluence profiles at 0.5 and 2 MeV of solar energetic particle events, from their onset up to the arrival of the interplanetary shock at the spacecraft position (located at 1 or 0.4 AU). Based on the proton transportation model by Lario et al. [Lario, D., Sanahuja, B., Heras, A.M. Energetic particle events: efficiency of interplanetary shocks as 50 keV E < 100 MeV proton accelerators. Astrophys. J. 509, 415–434, 1998] and the magnetohydrodynamic shock propagation model of Wu et al. [Wu, S.T., Dryer, M., Han, S.M. Non-planar MHD model for solar flare-generated disturbances in the Heliospheric equatorial plane. Sol. Phys. 84, 395–418, 1983], we have generated a database containing “synthetic” profiles of the proton fluxes and cumulative fluences of 384 solar energetic particle events. We are currently validating the applicability of this code for space weather forecasting by comparing the resulting “synthetic” flux profiles with those of several real events. 相似文献
786.
Noise in wireless systems from solar radio bursts 总被引:1,自引:0,他引:1
L.J. Lanzerotti D.E. Gary G.M. Nita D.J. Thomson C.G. Maclennan 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,36(12):2253-2257
Solar radio bursts were first discovered as result of their interference in early defensive radar systems during the Second World War (1942). Such bursts can still affect radar systems, as well as new wireless technologies. We have investigated a forty-year record of solar radio burst data (1960–1999) as well as several individual radio events in the 23rd solar cycle. This paper reviews the results of a portion of this research. Statistically, for frequencies f 1 GHz (near current wireless bands), there can be a burst with amplitudes >103 solar flux units (SFU; 1 SFU = 10−22 W/m2) every few days during solar maximum conditions, and such burst levels can produce problems in contemporary wireless systems. 相似文献
787.
S.J. Wang D. Maia M. Pick G. Aulanier J.-M. Malherbe J.-P. Delaboudinire 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,36(12):2273
We present our research on a fast and decelerating partial halo coronal mass ejection (CME) event detected in multi-wavelengths in the chromosphere and the corona on 14 October, 1999. The event involved a whole complex active area which spanned more than 40° of heliolongitude. It included a strong solar flare (XI/1N) and a complex eruptive filament within an active region of the entire complex. Especially, several radio sources were detected in the decimetric range prior to the CME by the Nançay Radioheliograph (NRH). A linear force-free field extrapolation of the Michelson Doppler Imager (MDI) magnetogram was performed to calculate the magnetic topology of the complex prior to the triggering of the event. The presence of a coronal null point combined with the occurrence of two distant and nearly simultaneous radio sources put strong arguments in favor of the generalized breakout model for the triggering of the eruption. The analysis of the subsequent development of the event suggests that large interconnecting loops were ejected together with the CME. 相似文献
788.
789.
Zonal mean temperature, pressure, zonal wind and geopotential height as functions of latitude 总被引:8,自引:0,他引:8
Eric L. Fleming Sushil Chandra J. J. Barnett M. Corney 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1990,10(12):11-59
The new zonal mean COSPAR International Reference Atmosphere (CIRA-86) of temperature, zonal wind, and geopotential/geometric height is presented. This data can be used as a function of altitude or pressure and has nearly pole-to-pole coverage (80°S-80°N) extending from the ground to approximately 120 km. Data sources and methods of computation are described; in general, hydrostatic and thermal wind balance are maintained at all levels and latitudes. As shown by a series of cross sectional plots, the new CIRA accurately reproduces most of the characteristic features of the atmosphere such as the equatorial wind and the general structure of the tropopause, stratopause, and mesopause. 相似文献
790.
V. Yurchyshyn Q. Hu R.P. Lepping B.J. Lynch J. Krall 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2007,40(12):1821-1826
Coronal mass ejections (CMEs) observed near the Sun via LASCO coronographic imaging are the most important solar drivers of geomagnetic storms. ICMEs, their interplanetary, near-Earth counterparts, can be detected in situ, for example, by the Wind and ACE spacecraft. An ICME usually exhibits a complex structure that very often includes a magnetic cloud (MC). They can be commonly modelled as magnetic flux ropes and there is observational evidence to expect that the orientation of a halo CME elongation corresponds to the orientation of the flux rope. In this study, we compare orientations of elongated CME halos and the corresponding MCs, measured by Wind and ACE spacecraft. We characterize the MC structures by using the Grad–Shafranov reconstruction technique and three MC fitting methods to obtain their axis directions. The CME tilt angles and MC fitted axis angles were compared without taking into account handedness of the underlying flux rope field and the polarity of its axial field. We report that for about 64% of CME–MC events, we found a good correspondence between the orientation angles implying that for the majority of interplanetary ejecta their orientations do not change significantly (less than 45 deg rotation) while travelling from the Sun to the near-Earth environment. 相似文献