首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6981篇
  免费   14篇
  国内免费   22篇
航空   3533篇
航天技术   2472篇
综合类   29篇
航天   983篇
  2019年   43篇
  2018年   96篇
  2017年   52篇
  2016年   49篇
  2014年   120篇
  2013年   187篇
  2012年   143篇
  2011年   212篇
  2010年   162篇
  2009年   259篇
  2008年   325篇
  2007年   166篇
  2006年   177篇
  2005年   179篇
  2004年   155篇
  2003年   215篇
  2002年   126篇
  2001年   240篇
  2000年   136篇
  1999年   176篇
  1998年   207篇
  1997年   157篇
  1996年   209篇
  1995年   251篇
  1994年   235篇
  1993年   146篇
  1992年   154篇
  1991年   86篇
  1990年   78篇
  1989年   163篇
  1988年   82篇
  1987年   79篇
  1986年   83篇
  1985年   245篇
  1984年   197篇
  1983年   157篇
  1982年   181篇
  1981年   218篇
  1980年   69篇
  1979年   49篇
  1978年   69篇
  1977年   58篇
  1976年   43篇
  1975年   76篇
  1974年   50篇
  1973年   51篇
  1972年   62篇
  1971年   50篇
  1970年   52篇
  1969年   44篇
排序方式: 共有7017条查询结果,搜索用时 12 毫秒
711.
HYDRA is an experimental hot plasma investigation for the POLAR spacecraft of the GGS program. A consortium of institutions has designed a suite of particle analyzers that sample the velocity space of electron and ions between 2 keV/q – 35 keV/q in three dimensions, with a routine time resolution of 0.5 s. Routine coverage of velocity space will be accomplished with an angular homogeneity assumption of 16°, appropriate for subsonic plasmas, but with special 1.5° resolution for electrons with energies between 100 eV and 10 keV along and opposed to the local magnetic field. This instrument produces 4.9 kilobits s–1 to the telemetry, consumes on average 14 W and requires 18.7 kg for deployment including its internal shielding. The scientific objectives for the polar magnetosphere fall into four broad categories: (1) those to define the ambient kinetic regimes of ions and electrons; (2) those to elucidate the magnetohydrodynamic responses in these regimes; (3) those to assess the particle populations with high time resolution; and (4) those to determine the global topology of the magnetic field. In thefirst group are issues of identifying the origins of particles at high magnetic latitudes, their energization, the altitude dependence of the forces, including parallel electric fields they have traversed. In thesecond group are the physics of the fluid flows, regimes of current, and plasma depletion zones during quiescent and disturbed magnetic conditions. In thethird group is the exploration of the processes that accompany the rapid time variations known to occur in the auroral zone, cusp and entry layers as they affect the flow of mass, momentum and energy in the auroral region. In thefourth class of objectives are studies in conjunction with the SWE measurements of the Strahl in the solar wind that exploit the small gyroradius of thermal electrons to detect those magnetic field lines that penetrate the auroral region that are directly open to interplanetary space where, for example, the Polar Rain is observed.  相似文献   
712.
An interface between the fully ionized hydrogen plasma of the solar wind (SW) and the partially ionized hydrogen gas flow of the local interstellar medium (LISM) is formed as a region where there is a strong interaction between these two flows. The interface is bounded by the solar wind termination shock (TS) and the LISM bow shock (BS) and is separated on two regions by the heliopause (HP) separating the solar wind and charged component of the LISM (plasma component below). The BS is formed due to the deceleration of the supersonic LISM flow relative to the solar system. Regions of the interface between the TS and HP and between the HP and BS were in literature named as the inner and outer heliosheaths, respectively. An investigation of the structure and physical properties of the heliosheath is at present especially interested due to the fact that Voyager-1 and Voyager-2 have crossed the TS in December 2004 (Burlaga, L.F., Ness, N.F., Acuna, M.Y., et al. Crossing the termination shock into the the heliosheath. Magnetic fields. Science 309, 2027–2029, 2005; Fisk, L.A. Journey into the unknown beyond. Science 309, 2016–2017, 2005; Decker, R.B., Krimigis, S.M., Roelof, E.C., et al. Voyager 1 in the foreshock, termination shock and heliosheath. Science 309, 2020–2024, 2005; Stone, E.C., Cummings, A.C., McDonald, F.B., et al. Voyager 1 explores the termination shock region and the heliosheath beyond. Science 309, 2017–2020, 2005) and in September 2007 (Jokipii, J.R. A shock for Voyager 2. Nature 454, 38–39, 2008; Gurnett, D.A., Kurth, W.S. Intense plasma waves at and near the solar wind termination shock. Nature 454, 78–80, 2008. doi: 10.1038/nature07023; Wang, L., Lin, R.P., Larson, D.E., Luhmann, J.G. Domination of heliosheath pressure by shock-accelerated pickup ions from observations of neutral atoms. Nature 454, 81–83, 2008. doi: 10.1038/nature07068.14; Burlaga, L.F., Ness, N.F., Acuna, M.H., et al. Magnetic fields at the solar wind termination shock. Nature 454, 75–77, 2008. doi: 10.1038/nature07029; Richardson, J.D., Kasper, J.C., Wang, C., et al. Cool heliosheath plasma and deceleration of the upstream solar wind at the termination shock. Nature 454, 63–66, 2008. doi: 10.1038/nature07024; Stone, E.C., Cummings, A.C., McDonald, F.B., et al. An asymmetric solar wind termination shock. Nature 454, 71–74, 2008. doi: 10.1038/nature07022; Decker, R.B., Krimigis, S.M., Roelof, E.C., et al. Mediation of the solar wind termination shock by non-thermal ions. Nature 454, 67–70, 2008. doi: 10.1038/nature 07030), respectively, and entered to the inner heliosheath.  相似文献   
713.
The major goals of NASA's Terrestrial Planet Finder (TPF) and the European Space Agency's Darwin missions are to detect terrestrial-sized extrasolar planets directly and to seek spectroscopic evidence of habitable conditions and life. Here we recommend wavelength ranges and spectral features for these missions. We assess known spectroscopic molecular band features of Earth, Venus, and Mars in the context of putative extrasolar analogs. The preferred wavelength ranges are 7-25 microns in the mid-IR and 0.5 to approximately 1.1 microns in the visible to near-IR. Detection of O2 or its photolytic product O3 merits highest priority. Liquid H2O is not a bioindicator, but it is considered essential to life. Substantial CO2 indicates an atmosphere and oxidation state typical of a terrestrial planet. Abundant CH4 might require a biological source, yet abundant CH4 also can arise from a crust and upper mantle more reduced than that of Earth. The range of characteristics of extrasolar rocky planets might far exceed that of the Solar System. Planetary size and mass are very important indicators of habitability and can be estimated in the mid-IR and potentially also in the visible to near-IR. Additional spectroscopic features merit study, for example, features created by other biosignature compounds in the atmosphere or on the surface and features due to Rayleigh scattering. In summary, we find that both the mid-IR and the visible to near-IR wavelength ranges offer valuable information regarding biosignatures and planetary properties; therefore both merit serious scientific consideration for TPF and Darwin.  相似文献   
714.
This paper describes the three-dimensional (3-D) electron density mapping of the ionosphere given as output by the assimilative IRI-SIRMUP-P (ISP) model for three different geomagnetic storms. Results of the 3-D model are shown by comparing the electron density profiles given by the model with the ones measured at two testing ionospheric stations: Roquetes (40.8°N, 0.5°E), Spain, and San Vito (40.6°N, 17.8°E), Italy. The reference ionospheric stations from which the autoscaled foF2 and M(3000)F2 data as well as the real-time vertical electron density profiles are assimilated by the ISP model are those of El Arenosillo (37.1°N, 353.3°E), Spain, Rome (41.8°N, 12.5°E), and Gibilmanna (37.9°N, 14.0°E), Italy. Overall, the representation of the ionosphere made by the ISP model is better than the climatological representation made by only the IRI-URSI and the IRI-CCIR models. However, there are few cases for which the assimilation of the autoscaled data from the reference stations causes either a strong underestimation or a strong overestimation of the real conditions of the ionosphere, which is in these cases better represented by only the IRI-URSI model. This ISP misrepresentation is mainly due to the fact that the reference ionospheric stations covering the region mapped by the model turn out to be few, especially for disturbed periods when the ionosphere is very variable both in time and in space and hence a larger number of stations would be required. The inclusion of new additional reference ionospheric stations could surely smooth out this concern.  相似文献   
715.
Investigations of Mir, Space Shuttle, Skylab and Apollo missions report extensive colonisation of the spacecraft by bacteria and fungi, which can lead to degradative effects on spacecraft equipment and devastating effects on space-grown crops. More than 80% of terrestrial greenhouse epidemics are due to the fungal genera Phytophthora, Pythium and Fusarium, which have been found in life support system test-beds. The advent of recombinant antibody technologies, including ribosome display and phage display, has made it possible to develop antibodies against virtually any toxin or organism and allows for maturation of antibodies by in vitro molecular evolution. These antibodies may play an important role in an integrated pest management regime for life support systems. Efficacy of existing fungal countermeasures could be increased by chemical linkage to antibodies, which target the site of action of the biocide or trap the pathogen in a biofilter. Novel recombinant antibody-biocide fusions can be expressed in situ by plants or symbiotic microbes to create direct disease resistance.  相似文献   
716.
The OSIRIS-REx mission will conduct a Radio Science investigation of the asteroid Bennu with a primary goal of estimating the mass and gravity field of the asteroid. The spacecraft will conduct proximity operations around Bennu for over 1 year, during which time radiometric tracking data, optical landmark tracking images, and altimetry data will be obtained that can be used to make these estimates. Most significantly, the main Radio Science experiment will be a 9-day arc of quiescent operations in a 1-km nominally circular terminator orbit. The pristine data from this arc will allow the Radio Science team to determine the significant components of the gravity field up to the fourth spherical harmonic degree. The Radio Science team will also be responsible for estimating the surface accelerations, surface slopes, constraints on the internal density distribution of Bennu, the rotational state of Bennu to confirm YORP estimates, and the ephemeris of Bennu that incorporates a detailed model of the Yarkovsky effect.  相似文献   
717.
Star identification can be accomplished by several different available algorithms that identify the stars observed by a star tracker. However, efficiency and reliability remain key issues and the availability of new active pixel cameras requires new approaches. Two novel algorithms for recursive mode star identification are presented here. The first approach is derived by the spherical polygon search (SP-search) algorithm, it was used to access all the cataloged stars observed by the sensor field-of-view (FOV) and recursively add/remove candidate cataloged stars according to the predicted image motion induced by camera attitude dynamics. Star identification is then accomplished by a star pattern matching technique which identifies the observed stars in the reference catalog. The second method uses star neighborhood information and a catalog neighborhood pointer matrix to access the star catalog. In the recursive star identification process, and under the assumption of "slow" attitude dynamics, only the stars in the neighborhood of previously identified stars are considered for star identification in the succeeding frames. Numerical tests are performed to validate the absolute and relative efficiency of the proposed methods.  相似文献   
718.
Ulysses plasma observations reveal that the forward shocks that commonly bound the leading edges of corotating interaction regions (CIRs) beyond 2 AU from the Sun at low heliographic latitudes nearly disappeared at a latitude of S26°. On the other hand, the reverse shocks that commonly bound the trailing edges of the CIRs were observed regularly up to S41.5°, but became weaker with increasing latitude. Only three CIR shocks have been observed poleward of S41.5°; all of these were weak reverse shocks. The above effects are a result of the forward waves propagating to lower heliographic latitudes and the reverse waves to higher latitudes with increasing heliocentric distance. These observational results are in excellent agreement with the predictions of a global model of solar wind flows that originate in a simple tilted-dipole geometry back at the Sun.  相似文献   
719.
Theoretical pressure balance arguments have implied that steady convection is hardly possible in the terrestrial magnetotail and that steady energy input necessarily generates a cyclic loading-unloading sequence, i.e., repetitive substorms. However, observations have revealed that enhanced solar wind energy input to the magnetospheric system may either lead to substorm activity or enhanced but steady convection. This topic is reviewed with emphasis on several recent case studies of the Steady Magnetospheric Convection (SMC) events. In these cases extensive data sets from both satellite and ground-based instruments from various magnetospheric and ionospheric regions were available.Accurate distinction of the spatial and temporal scales of the magnetospheric processes is vital for correct interpretation of the observations during SMC periods. We show that on the large scale, the magnetospheric configuration and plasma convection are stable during SMC events, but that both reveal considerable differences from their quiet-time assemblies. On a shorter time scale, there are numerous transient activations which are similar to those found during substorms, but which presumably originate from a more distant tail reconnection process, and map to the poleward boundary of the auroral oval. The available observations and the unresolved questions are summarized here.The tail magnetic field during SMC events resembles both substorm growth and recovery phases in the neartail and midtail, respectively, but this configuration may remain stable for up to ten hours. Based on observations and model results we discuss how the magnetospheric system avoids pressure balance problems when the plasma convects earthward.Finally, the importance of further coordinated studies of SMC events is emphasized. Such studies may shed more light on the substorm dynamics and help to verify quantitatively the theoretical models of the convecting magnetosphere.  相似文献   
720.
The Lightning and Radio Emission Detector (LRD) instrument will be carried by the Galileo Probe into Jupiter's atmosphere. The LRD will verify the existence of lightning in the atmosphere and will determine the details of many of its basic characteristics. The instrument, operated in its magnetospheric mode at distances of about 5, 4, 3, and 2 planetary radii from Jupiter's center, will also measure the radio frequency (RF) noise spectrum in Jupiter's magnetosphere. The LRD instrument is composed of a ferritecore radio frequency antenna ( 100 Hz to 100 kHz) and two photodiodes mounted behind individual fisheye lenses. The output of the RF antenna is analyzed both separately and in coincidence with the optical signals from the photodiodes. The RF antenna provides data both in the frequency domain (with three narrow-band channels, primarily for deducing the physical properties of distant lightning) and in the time domain with a priority scheme (primarily for determining from individual RF waveforms the physical properties of closeby-lightning).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号