We propose to study the radiation environment on board different flight vehicles: cosmos-type satellites, orbital stations, Space Shuttles and civil (sonic and supersonic) aircraft. These investigations will be carried out with single type of passive detector, namely, nuclear photoemulsions (NPE) with adjustable threshold of particle detection within broad range of linear energy transfer (LET) that is done by means of the technique of selective development of NPE exposed in space.
These investigations will allow one to determine:
• integral spectra of LET of charged particles of cosmic ray (CR) over a wide range from 2.0 to 5×104 MeV/cm in biological tissue;
• differential energy spectra of fast neutrons (1–20 MeV);
• estimation of absorbed and equivalent doses from charged and neutral component CR;
• charge and energy spectra of low energy nuclei (E≤100 MeV) with Z≥2 having in view the extreme hazard radiation to biological objects and microelectronic schemes taken on board inside and outside of these different flight vehicles with exposures from several days to several months.
The investigation of radiation environment on board the airplanes depending on the flight parameters will be conducted using emulsions of different sensitivity without any controlling of threshold sensitivity (Akopova et al., 1996). The proposed detector can be used in the joint experiments on the new International Cosmic Station “Alpha”. 相似文献
Tungsten-nickel-iron composites are commersially fabricated from powders by liquid phase sintering. They consist of almost spherical tungsten particles in a matrix of nickel-iron-tungsten. A way to contribute to the understanding of the sintering mechanism and the mechanical properties is to study composites with a low amount of tungsten particles. Depending on the great difference in density between the particles and the matrix, this can only be done under microgravity. A primary sintering test of the tungsten composite was done in space using the Texus 10 modul. Prealloys were fabricated from metal powder mixtures, which were hot isostatic pressed. Liquid phase sintering of the two tungsten composites under microgravity has shown that the particles are evenly distributed and that no segregation occured due to convection. Despite an uneven distribution of the particles in the preformed specimens and the short melting period the patricle distribution has become even. Compared to short time sintering tests made on four alloys in the laboratory, the growth and separation of the particles was fast. 相似文献
An analysis based on statistical considerations and Monte Carlo simulations indicates that a noncoherent moving target indicator (MTI) using a linear envelope detector differs from one using a square law envelope detector. The square law envelope detector is usually described in the literature because of ease of analysis, and it is commonly stated or implied that the results are the same for the two cases because of the similar spectral characteristics of the detectors. A comparison is made between the two noncoherent MTIs and the coherent MTI in terms of clutter attenuation and MTI improvement factors. 相似文献
The ultraviolet (UV) environment of Mars has been investigated to gain an understanding of the variation of exposure throughout a Martian year, and link this flux to biological effects and possible survival of organisms at the Martian surface. To gain an idea of how the solar UV radiation varies between different regions, including planned landing sites of two future Mars surface missions, we modelled the total solar UV surface flux throughout one Martian year for two different dust scenarios. To understand the degree of solar UV stress on micro-organisms and/or molecules essential for life on the surface of Mars, we also calculated the biologically effective dose (BED) for T7 and Uracil in relevant wavelength regions at the Martian surface as a function of season and latitude, and discuss the biological survival rates in the presence of Martian solar UV radiation. High T7/Uracil BED ratios indicate that even at high latitudes where the UV flux is significantly reduced, the radiation environment is still hostile for life due to the persisting UV-C component of the flux. 相似文献
A new smooth second-order sliding mode control (SSOSM) is proposed and proved for a system driven by uncertain sufficiently smooth disturbances. The main target application of this technique, the missile interceptor guidance-control system against targets performing evasive maneuvers, is considered to demonstrate benefits of this design for a two-loop integration of guidance and flight control systems. The designed guidance-control system performance is verified via computer simulations using a miniature hypervelocity kinetic energy endo-atmospheric interceptor planar model. 相似文献
An evaluation of the exposure of space travelers to galactic cosmic radiation outside the earth's magnetosphere is made by calculating fluences of high-energy primary and secondary particles with various charges traversing a sphere of area 100 microns2. Calculations relating to two shielding configurations are presented: the center of a spherical aluminum shell of thickness 1 g/cm2, and the center of a 4 g/cm2 thick aluminum spherical shell within which there is a 30 g/cm2 diameter spherical water phantom with the point of interest 5 g/cm2 from the surface. The area of 100 microns2 was chosen to simulate the nucleus of a cell in the body. The frequencies as a function of charge component in both shielding configurations reflects the odd-even disparity of the incident particle abundances. For a three-year mission, 33% of the cells in the more heavily shielded configuration would be hit by at least one particle with Z greater than 10. Six percent would be hit by at least two such particles. This emphasizes the importance of studying single high-Z particle effects both on cells which might be "at risk" for cancer induction and on critical neural cells or networks which might be vulnerable to inactivation by heavy charged particle tracks. Synergistic effects with the more numerous high-energy protons and helium ions cannot be ruled out. In terms of more conventional radiation risk assessment, the dose equivalent decreased by a factor of 2.85 from free space to that in the more heavily shielded configuration. Roughly half of this was due to the decrease in energy deposition (absorbed dose) and half to the decrease in biological effectiveness (quality factor). 相似文献
Some design and experimental data on three cascades with the same 12° bending angle for the primary nozzle block of a gas
turbine are presented. As is seen from the investigation the most efficient at the transonic velocities of the outward flow
are the blades, the back curvature of which in the bevel cut zone decreases to the trailing edge. Also presented is the fact
that the blade with the increasing back curvature has noticeably larger losses. 相似文献
We describe the formation of hot intergalactic gas along with baryonic remnants in galaxy halos. In this scenario, the mass and metallicity of the hot intracluster and intragroup gas relates directly to the production of baryonic remnants during the collapse of galactic halos. We construct a schematic but self-consistent model in which early bursts of star formation lead to a large remnant population in the halo, and to the outflow of stellar ejecta into the halo and ultimately the Local Group. We consider local as well as high redshift constraints on this scenario. This study suggests that the microlensing objects in the Galactic halo may predominantly be 0.5M white dwarfs, assuming that the initial mass function for early star formation favored the formation of intermediate mass stars with m 1M. However, the bulk of the baryonic dark matter in this scenario is associated with the ejecta of the white dwarf progenitors, and resides in the hot intergalactic medium. 相似文献
The paper presents observation of relativistic electrons. Data are collected by the Radiation Risk Radiometer-Dosimeters (R3D) B2/B3 modifications during the flights of Foton M2/M3 satellites in 2005 and 2007 as well as by the R3DE instrument at the European Technology Exposure Facility (EuTEF) on the Columbus External Payload Adaptor at the International Space Station (ISS) in the period February 20 – April 28, 2008. On the Foton M2/M3 satellites relativistic electrons are observed more frequently than on the ISS because of higher (62.8°) inclination of the orbit. At both Foton satellites the usual duration of the observations are a few minutes long. On the ISS the duration usually is about 1 min or less. The places of observations of high doses due to relativistic electrons are distributed mainly at latitudes above 50° geographic latitude in both hemispheres on Foton M2/M3 satellites. A very high maximum is found in the southern hemisphere at longitudinal range 0°–60°E. At the ISS the maximums are observed between 45° and 52° geographic latitude in both hemispheres mainly at longitudes equatorward from the magnetic poles. The measured absolute maximums of dose rates generated by relativistic electrons are found to be as follows: 304 μGy h−1 behind 1.75 g cm−2 shielding at Foton M2, 2314 μGy h−1 behind 0.71 g cm−2 shielding at Foton M3 and 19,195 μGy h−1 (Flux is 8363 cm−2 s−1) behind les than 0.4 g cm−2 shielding at ISS. 相似文献