首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3472篇
  免费   4篇
  国内免费   6篇
航空   1766篇
航天技术   914篇
综合类   9篇
航天   793篇
  2021年   18篇
  2019年   16篇
  2018年   180篇
  2017年   149篇
  2016年   73篇
  2015年   37篇
  2014年   56篇
  2013年   90篇
  2012年   91篇
  2011年   204篇
  2010年   181篇
  2009年   231篇
  2008年   214篇
  2007年   182篇
  2006年   64篇
  2005年   113篇
  2004年   77篇
  2003年   85篇
  2002年   43篇
  2001年   94篇
  2000年   48篇
  1999年   65篇
  1998年   69篇
  1997年   66篇
  1996年   65篇
  1995年   87篇
  1994年   86篇
  1993年   46篇
  1992年   51篇
  1991年   15篇
  1990年   24篇
  1989年   51篇
  1988年   32篇
  1987年   20篇
  1986年   28篇
  1985年   73篇
  1984年   70篇
  1983年   42篇
  1982年   69篇
  1981年   67篇
  1980年   17篇
  1979年   10篇
  1978年   31篇
  1977年   12篇
  1975年   24篇
  1974年   16篇
  1973年   16篇
  1972年   16篇
  1970年   9篇
  1969年   12篇
排序方式: 共有3482条查询结果,搜索用时 718 毫秒
991.
The Mir station has been in a 51.65 degrees inclination orbit since March 1986. In March 1995, the first US astronaut flew on the Mir-18 mission and returned on the Space Shuttle in July 1995. Since then three additional US astronauts have stayed on orbit for up to 6 months. Since the return of the first US astronaut, both the Spektr and Priroda modules have docked with Mir station, altering the mass shielding distribution. Radiation measurements, including the direct comparison of US and Russian absorbed dose rates in the Base Block of the Mir station, were made during the Mir-18 and -19 missions. There is a significant variation of dose rates across the core module; the six locations sampled showed a variation of a factor of nearly two. A tissue equivalent proportional counter (TEPC) measured a total absorbed dose rate of 300 microGy/day, roughly equally divided between the rate due to trapped protons from the South Atlantic Anomaly (SAA) and galactic cosmic radiation (GCR). This dose rate is about a factor of two lower than the rate measured by the thinly shielded (0.5 g cm-2 of Al) operational ion chamber (R-16), and about 3/2 of the rate of the more heavily shielded (3.5 g cm-2 of Al) ion chamber. This is due to the differences in the mass shielding properties at the location of these detectors. A comparison of integral linear energy transfer (LET) spectra measured by TEPC and plastic nuclear track detectors (PNTDs) deployed side by side are in remarkable agreement in the LET region of 15-1000 keV/micrometer, where the PNTDs are fully efficient. The average quality factor, using the ICRP-26 definition, was 2.6, which is higher than normally used. There is excellent agreement between the measured GCR dose rate and model calculations, but this is not true for trapped protons. The measured Mir-18 crew skin dose equivalent rate was 1133 microSv/day. Using the skin dose rate and anatomical models, we have estimated the blood-forming organ (BFO) dose rate and the maximum stay time in orbit for International Space Station crew members.  相似文献   
992.
We discuss the structure and evolution of CIRs and their successors in the outer heliosphere. These structures undergo significant evolution as they are convected to greater heliocentric distances. A progression of different types of structure are observed at increasing distance from the Sun. Similar structures are observed at similar heliocentric distance at different portions of the solar cycle. CIRs and their successors are associated with many important physical processes in the outer heliosphere. We discuss the relationship between these structures and recurrent phenomena such as cosmic ray variations, and review some of the associated theoretical models on the role of corotating structures and global merged interaction regions (GMIRs) in global cosmic ray modulation. We also discuss some outstanding questions related to the origin of non-dispersive quasi-periodic particle enhancements associated with CIRs and their successors in the outer heliosphere. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
993.
The Mars Science Laboratory Mission (MSL), scheduled to land on Mars in the summer of 2012, consists of a rover and a scientific payload designed to identify and assess the habitability, geological, and environmental histories of Gale crater. Unraveling the geologic history of the region and providing an assessment of present and past habitability requires an evaluation of the physical and chemical characteristics of the landing site; this includes providing an in-depth examination of the chemical and physical properties of Martian regolith and rocks. The MSL Sample Acquisition, Processing, and Handling (SA/SPaH) subsystem will be the first in-situ system designed to acquire interior rock and soil samples from Martian surface materials. These samples are processed and separated into fine particles and distributed to two onboard analytical science instruments SAM (Sample Analysis at Mars Instrument Suite) and CheMin (Chemistry and Mineralogy) or to a sample analysis tray for visual inspection. The SA/SPaH subsystem is also responsible for the placement of the two contact instruments, Alpha Particle X-Ray Spectrometer (APXS), and the Mars Hand Lens Imager (MAHLI), on rock and soil targets. Finally, there is a Dust Removal Tool (DRT) to remove dust particles from rock surfaces for subsequent analysis by the contact and or mast mounted instruments (e.g. Mast Cameras (MastCam) and the Chemistry and Micro-Imaging instruments (ChemCam)).  相似文献   
994.
Spatial perspective taking is the ability to reason about spatial relations relative to another’s viewpoint. Here, we propose a mechanistic hypothesis that relates mental representations of one’s viewpoint to the transformations used for spatial perspective taking. We test this hypothesis using a novel behavioral paradigm that assays patterns of response time and variation in those patterns across people. The results support the hypothesis that people maintain a schematic representation of the space around their body, update that representation to take another’s perspective, and thereby to reason about the space around their body. This is a powerful computational mechanism that can support imitation, coordination of behavior, and observational learning.  相似文献   
995.
Measuring ground deformation underwater is essential for understanding Earth processes at many scales. One important example is subduction zones, which can generate devastating earthquakes and tsunamis, and where the most important deformation signal related to plate locking is usually offshore. We present an improved method for making offshore vertical deformation measurements, that involve combining tide gauge and altimetry data. We present data from two offshore sites located on either side of the plate interface at the New Hebrides subduction zone, where the Australian plate subducts beneath the North Fiji basin. These two sites have been equipped with pressure gauges since 1999, to extend an on-land GPS network across the plate interface. The pressure series measured at both sites show that Wusi Bank, located on the over-riding plate, subsides by 11 ± 4 mm/yr with respect to Sabine Bank, which is located on the down-going plate. By combining water depths derived from the on-bottom pressure data with sea surface heights derived from altimetry data, we determine variations of seafloor heights in a global reference frame. Using altimetry data from TOPEX/Poseidon, Jason-1, Jason-2 and Envisat missions, we find that the vertical motion at Sabine Bank is close to zero and that Wusi Bank subsides by at least 3 mm/yr and probably at most 11 mm/yr.  相似文献   
996.
The GeV observations by Fermi-LAT give us the opportunity to characterize the high-energy emission (100 MeV–300 GeV) variability properties of the BL Lac object S5 0716+714. In this study, we performed flux and spectral analysis of more than 3 year long (August 2008 to April 2012) Fermi-LAT data of the source. During this period, the source exhibits two different modes of flux variability with characteristic timescales of ∼75 and ∼140 days, respectively. We also notice that the flux variations are characterized by a weak spectral hardening. The GeV spectrum of the source shows a clear deviation from a simple power law, and is better explained by a broken power law. Similar to other bright Fermi blazars, the break energy does not vary with the source flux during the different activity states. We discuss several possible scenarios to explain the observed spectral break.  相似文献   
997.
The Solar System includes two planets—Mercury and Mars—significantly less massive than Earth, and all evidence indicates that planets of similar size orbit many stars. In fact, one of the first exoplanets to be discovered is a lunar-mass planet around a millisecond pulsar. Novel classes of exoplanets have inspired new ideas about planet formation and evolution, and these “sub-Earths” should be no exception: they include planets with masses between Mars and Venus for which there are no Solar System analogs. Advances in astronomical instrumentation and recent space missions have opened the sub-Earth frontier for exploration: the Kepler mission has discovered dozens of confirmed or candidate sub-Earths transiting their host stars. It can detect Mars-size planets around its smallest stellar targets, as well as exomoons of comparable size. Although the application of the Doppler method is currently limited by instrument stability, future spectrographs may detect equivalent planets orbiting close to nearby bright stars. Future space-based microlensing missions should be able to probe the sub-Earth population on much wider orbits. A census of sub-Earths will complete the reconnaissance of the exoplanet mass spectrum and test predictions of planet formation models, including whether low-mass M dwarf stars preferentially host the smallest planets. The properties of sub-Earths may reflect their low gravity, diverse origins, and environment, but they will be elusive: Observations of eclipsing systems by the James Webb Space Telescope may give us our first clues to the properties of these small worlds.  相似文献   
998.
The low latitude ionosphere is strongly affected by several highly variable electrodynamic processes. Over the last two decades ground-based and satellite measurements and global numerical models have been extensively used to study the longitude-dependent climatology of low latitude electric fields and currents. These electrodynamic processes and their ionospheric effects exhibit large ranges of temporal and spatial variations during both geomagnetic quiet and disturbed conditions. Numerous recent studies have investigated the short term response of equatorial electric fields and currents to lower atmospheric transport processes and solar wind-magnetosphere driving mechanisms. This includes the large electric field and current perturbations associated with arctic sudden stratospheric warming events during geomagnetic quiet times and highly variable storm time prompt penetration and ionospheric disturbance dynamo effects. In this review, we initially describe recent experimental and numerical modeling results of the global climatology and short term variability of quiet time low latitude electrodynamic plasma drifts. Then, we examine the present understanding of equatorial electric field and current perturbation fields during periods of enhanced geomagnetic activity.  相似文献   
999.
The structure and dynamics of a box in a stellar corona can be modeled employing a 3D MHD model for different levels of magnetic activity. Depending on the magnetic flux through the surface the nature of the resulting coronal structures can be quite different. We investigate a model of an active region for two sunspots surrounded by magnetic field patches comparable in magnetic flux to the sunspots. The model results in emission from the model corona being concentrated in loop structures. In Gudiksen and Nordlund (2005) the loops seen in EUV and X-ray emission outline the magnetic field, following the general paradigm. However, in our model, where the magnetic field is far from a force-free state, the loops seen in X-ray emission do not follow the magnetic field lines. This result is of interest especially for loops as found in areas where the magnetic field emerging from active regions interacts with the surrounding network.  相似文献   
1000.
It has been suggested that a manned mission to Mars be launched at solar maximum rather than at solar minimum to minimize the radiation exposure to galactic cosmic rays. It is true that the number of hits from highly ionizing particles to critical regions in the brain will be less at solar maximum, and it is of interest to estimate how much less. We present here calculations for several sites within the brain from iron ions (z = 26) and from particles with charge, z, greater than or equal to 15. The same shielding configurations and sites in the brain used in an earlier paper for solar minimum are employed so that direct comparison of results between the two solar activity conditions can be made. A simple pressure-vessel wall and an equipment room onboard a spacecraft are chosen as shielding examples. In the equipment room, typical results for the thalamus are that the probability of any particles with 7 greater than or equal to 15 and from 2.3 percent to 1.3 percent for iron ions. The extra shielding provided in the equipment room makes little difference in these numbers. We conclude that this decrease in hit frequency (less than a factor of two) does not provide a compelling reason to avoid solar minimum for a manned mission to Mars. This conclusion could be revised, however, if a very small number of hits is found to cause critical malfunction within the brain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号