首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4533篇
  免费   6篇
  国内免费   11篇
航空   2164篇
航天技术   1733篇
综合类   14篇
航天   639篇
  2021年   29篇
  2019年   28篇
  2018年   79篇
  2017年   56篇
  2016年   51篇
  2015年   19篇
  2014年   94篇
  2013年   130篇
  2012年   93篇
  2011年   154篇
  2010年   115篇
  2009年   207篇
  2008年   251篇
  2007年   104篇
  2006年   97篇
  2005年   111篇
  2004年   120篇
  2003年   163篇
  2002年   83篇
  2001年   184篇
  2000年   85篇
  1999年   136篇
  1998年   139篇
  1997年   110篇
  1996年   118篇
  1995年   152篇
  1994年   162篇
  1993年   72篇
  1992年   95篇
  1991年   37篇
  1990年   48篇
  1989年   98篇
  1988年   50篇
  1987年   54篇
  1986年   43篇
  1985年   136篇
  1984年   106篇
  1983年   84篇
  1982年   116篇
  1981年   132篇
  1980年   42篇
  1979年   32篇
  1978年   49篇
  1977年   28篇
  1976年   22篇
  1975年   40篇
  1974年   28篇
  1973年   24篇
  1972年   31篇
  1969年   24篇
排序方式: 共有4550条查询结果,搜索用时 93 毫秒
171.
For pt.I see ibid., vol.30, no.1, (Jan.1994). This paper describes the calculation of PF and PD for the Hough transform technique when the primary threshold crossings are weighted by their power before transforming (i.e., noncoherent integration). After expressions for PF and PD are derived, we examine the question of optimal granularity of the Hough accumulator space. We also investigate the relationship between primary and secondary thresholds and its effect on detectability  相似文献   
172.
The EUV wavelength regions is rich in emission lines from the transition region and the corona. Spectroscopic techniques have been used extensively to determine the physical conditions in the solar atmosphere for such diverse phenomena as coronal holes, active regions, sunspots, flares, etc. The diagnostics and dynamics of plasmas, both homogeneous and inhomogeneous plasmas, are reviewed. The future projects such as the CDS and SUMER instruments on SOHO have been discussed as they cover EUV wavelength region and will provide a wealth of observational data with excellent spatial, spectral, and temporal resolution.  相似文献   
173.
174.
An Overview of the Fast Auroral SnapshoT (FAST) Satellite   总被引:3,自引:0,他引:3  
Pfaff  R.  Carlson  C.  Watzin  J.  Everett  D.  Gruner  T. 《Space Science Reviews》2001,98(1-2):1-32
The FAST satellite is a highly sophisticated scientific satellite designed to carry out in situ measurements of acceleration physics and related plasma processes associated with the Earth's aurora. Initiated and conceptualized by scientists at the University of California at Berkeley, this satellite is the second of NASA's Small Explorer Satellite program designed to carry out small, highly focused, scientific investigations. FAST was launched on August 21, 1996 into a high inclination (83°) elliptical orbit with apogee and perigee altitudes of 4175 km and 350 km, respectively. The spacecraft design was tailored to take high-resolution data samples (or `snapshots') only while it crosses the auroral zones, which are latitudinally narrow sectors that encircle the polar regions of the Earth. The scientific instruments include energetic electron and ion electrostatic analyzers, an energetic ion instrument that distinguishes ion mass, and vector DC and wave electric and magnetic field instruments. A state-of-the-art flight computer (or instrument data processing unit) includes programmable processors that trigger the burst data collection when interesting physical phenomena are encountered and stores these data in a 1 Gbit solid-state memory for telemetry to the Earth at later times. The spacecraft incorporates a light, efficient, and highly innovative design, which blends proven sub-system concepts with the overall scientific instrument and mission requirements. The result is a new breed of space physics mission that gathers unprecedented fields and particles observations that are continuous and uninterrupted by spin effects. In this and other ways, the FAST mission represents a dramatic advance over previous auroral satellites. This paper describes the overall FAST mission, including a discussion of the spacecraft design parameters and philosophy, the FAST orbit, instrument and data acquisition systems, and mission operations.  相似文献   
175.
Carrier phase differential GPS (DGPS) navigation architectures and algorithms for automatic shipboard landing of aircraft are described. Processing methodologies are defined to provide high integrity carrier phase cycle estimation and positioning by optimally exploiting the complementary benefits of measurement filtering and satellite geometric redundancy for the terminal navigation problem. Navigation performance sensitivity to the standard deviations of raw carrier and code phase measurement errors, measurement error correlation times, and the filtering duration is quantified. Necessary conditions to ensure acceptable terminal navigation availability are specifically defined.  相似文献   
176.
Adaptive beamforming is used to enhance the detection of target echoes received by high frequency (HF) surface wave (HFSW) over-the-horizon (OTH) radars in the presence of spatially structured interference. External interference from natural and man-made sources typically masks the entire range-Doppler search space and is characterized by a spatial covariance matrix that is time-varying or nonstationary over the coherent processing interval (CPI). Adaptive beamformers that update the spatial filtering weight vector within the CPI are likely to suppress such interference most effectively, but the intra-CPI antenna pattern fluctuations result in temporal decorrelation of the clutter which severely degrades subclutter visibility after Doppler processing. A robust adaptive beamformer that effectively suppresses spatially nonstationary interference without degrading subclutter visibility is proposed here. The proposed algorithm is computationally efficient and suitable for practical implementation. Its operational performance is evaluated using experimental data recorded by the Iluka HFSW OTH radar, located near Darwin in far north Australia.  相似文献   
177.
Langmuir waves and turbulence resulting from an electron beam-plasma instability play a fundamental role in the generation of solar radio bursts. We report recent theoretical advances in nonlinear dynamics of Langmuir waves. First, starting from the generalized Zakharov equations, we study the parametric excitation of solar radio bursts at the fundamental plasma frequency driven by a pair of oppositely propagating Langmuir waves with different wave amplitudes. Next, we briefly discuss the emergence of chaos in the Zakharov equations. We point out that chaos can lead to turbulence in the source regions of solar radio emissions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
178.
Blind adaptive decision fusion for distributed detection   总被引:3,自引:0,他引:3  
We consider the problem of decision fusion in a distributed detection system. In this system, each detector makes a binary decision based on its own observation, and then communicates its binary decision to a fusion center. The objective of the fusion center is to optimally fuse the local decisions in order to minimize the final error probability. To implement such an optimal fusion center, the performance parameters of each detector (i.e., its probabilities of false alarm and missed detection) as well as the a priori probabilities of the hypotheses must be known. However, in practical applications these statistics may be unknown or may vary with time. We develop a recursive algorithm that approximates these unknown values on-line. We then use these approximations to adapt the fusion center. Our algorithm is based on an explicit analytic relation between the unknown probabilities and the joint probabilities of the local decisions. Under the assumption that the local observations are conditionally independent, the estimates given by our algorithm are shown to be asymptotically unbiased and converge to their true values at the rate of O(1/k/sup 1/2/) in the rms error sense, where k is the number of iterations. Simulation results indicate that our algorithm is substantially more reliable than two existing (asymptotically biased) algorithms, and performs at least as well as those algorithms when they work.  相似文献   
179.
Theoretical pressure balance arguments have implied that steady convection is hardly possible in the terrestrial magnetotail and that steady energy input necessarily generates a cyclic loading-unloading sequence, i.e., repetitive substorms. However, observations have revealed that enhanced solar wind energy input to the magnetospheric system may either lead to substorm activity or enhanced but steady convection. This topic is reviewed with emphasis on several recent case studies of the Steady Magnetospheric Convection (SMC) events. In these cases extensive data sets from both satellite and ground-based instruments from various magnetospheric and ionospheric regions were available.Accurate distinction of the spatial and temporal scales of the magnetospheric processes is vital for correct interpretation of the observations during SMC periods. We show that on the large scale, the magnetospheric configuration and plasma convection are stable during SMC events, but that both reveal considerable differences from their quiet-time assemblies. On a shorter time scale, there are numerous transient activations which are similar to those found during substorms, but which presumably originate from a more distant tail reconnection process, and map to the poleward boundary of the auroral oval. The available observations and the unresolved questions are summarized here.The tail magnetic field during SMC events resembles both substorm growth and recovery phases in the neartail and midtail, respectively, but this configuration may remain stable for up to ten hours. Based on observations and model results we discuss how the magnetospheric system avoids pressure balance problems when the plasma convects earthward.Finally, the importance of further coordinated studies of SMC events is emphasized. Such studies may shed more light on the substorm dynamics and help to verify quantitatively the theoretical models of the convecting magnetosphere.  相似文献   
180.
Ulysses plasma measurement from 1.15 to 5.31 AU and from S6.4° to S48.3° solar latitude are used to assess the trends in the solar wind thermal electron temperature and anisotropy. Improved spacecraft potential corrections and data products have been incorporated. The radial temperature gradient is steeper than in previous determinations, but flatter than adiabatic. When normalized to 1 AU, temperature decrease with increasing latitude. Little change in the average thermal anisotropy has been seen during the mission.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号